Difference between pages "Install/Stage3" and "Install/Partitioning"

< Install(Difference between pages)
(Which Build?)
 
(Introduction)
 
Line 1: Line 1:
 
<noinclude>
 
<noinclude>
{{InstallPart|the process of installing the Stage3 tarball}}
+
{{InstallPart|the process of partitioning and filesystem creation}}
 
</noinclude>
 
</noinclude>
==== Setting the Date ====
+
=== Prepare Hard Disk ===
  
{{fancyimportant|If your system's date and time are too far off (typically by months or years,) then it may prevent Portage from properly downloading source tarballs. This is because some of our sources are downloaded via HTTPS, which use SSL certificates and are marked with an activation and expiration date. However, if you system time is relatively close to correct, you can probably skip this step for now.}}
+
In this section, we'll learn about the different ways that Funtoo Linux can be installed on -- and boot from -- a hard disk.
  
Now is a good time to verify the date and time are correctly set to UTC. Use the <code>date</code> command to verify the date and time:
+
==== Introduction ====
 +
 
 +
In earlier times, there was only one way to boot a PC-compatible computer. All of our desktops and servers had a standard PC BIOS, all our hard drives used Master Boot Records to boot the system, and our hard drives were partitioned into different regions using the MBR partition scheme. That was just how it was done. And we liked it that way!
 +
 
 +
Then, along came EFI and UEFI, which are new-style firmware designed to boot systems, along with GPT partition tables to support disks larger than 2.2TB. All of the sudden, we had a variety of options to boot Linux systems, turning what once was a one-method-fits-all approach into something a lot more complex.
 +
 
 +
Let's take a moment to review the options available to you for configuring a hard drive to boot Funtoo Linux. This Install Guide uses, and recommends, the old-school method of BIOS booting and using an MBR. It works. There's nothing wrong with it. If your system disk is 2TB or smaller in size, it won't prevent you from using all of your disk's capacity, either.
 +
 
 +
But, there are some situations where the old-school method isn't optimal. If you have a system disk >2TB in size, then MBR partitions won't allow you to access all your storage. So that's one reason. Another reason is that there are some so-called "PC" systems out there that don't support BIOS booting anymore, and force you to use UEFI to boot. So, out of compassion for people who fall into this predicament, this Install Guide documents UEFI booting too.
 +
 
 +
Our recommendation is still to go old-school unless you have reason not to. We call this method the '''BIOS + GRUB (MBR)''' method. It's the traditional method of setting up a PC-compatible system to boot Linux.
 +
 
 +
If you need to use UEFI to boot, we recommend not using the MBR at all for booting, as some systems support this, but others don't. Instead, we recommend using UEFI to boot GRUB, which in turn will load Linux. We refer to this method as the '''UEFI + GRUB (GPT)''' method.
 +
 
 +
And yes, there are even more methods, some of which are documented on the [[Boot Methods]] page. We used to recommend a '''BIOS + GRUB (GPT)''' method but it is not consistently supported across a wide variety of hardware.
 +
 
 +
'''The big question is -- which boot method should you use?''' Here's how to tell.
 +
 
 +
;Principle 1 - Old School: If you can reliably boot System Rescue CD and it shows you an initial light blue menu, you are booting the CD using the BIOS, and it's likely that you can thus boot Funtoo Linux using the BIOS. So, go old-school and use BIOS booting, ''unless'' you have some reason to use UEFI, such as having a >2.2TB system disk. In that case, see Principle 2, as your system may also support UEFI booting.
 +
 
 +
;Principle 2 - New School: If you can reliably boot System Rescue CD and it shows you an initial black and white menu -- congratulations, your system is configured to support UEFI booting. This means that you are ready to install Funtoo Linux to boot via UEFI. Your system may still support BIOS booting, but just be trying UEFI first. You can poke around in your BIOS boot configuration and play with this.
 +
 
 +
;What's the Big Difference between Old School and New School?: Here's the deal. If you go with old-school MBR partitions, your <code>/boot</code> partition will be an ext2 filesystem, and you'll use <code>fdisk</code> to create your MBR partitions. If you go with new-school GPT partitions and UEFI booting, your <code>/boot</code> partition will be a vfat filesystem, because this is what UEFI is able to read, and you will use <code>gdisk</code> to create your GPT partitions. And you'll install GRUB a bit differently. That's about all it comes down to, in case you were curious.
 +
 
 +
{{Note|'''Some motherboards may appear to support UEFI, but don't.''' Do your research. For example, the Award BIOS in my Gigabyte GA-990FXA-UD7 rev 1.1 has an option to enable UEFI boot for CD/DVD. '''This is not sufficient for enabling UEFI boot for hard drives and installing Funtoo Linux.''' UEFI must be supported for both removable media (so you can boot System Rescue CD using UEFI) as well as fixed media (so you can boot your new Funtoo Linux installation.) It turns out that later revisions of this board (rev 3.0) have a new BIOS that fully supports UEFI boot.  This may point to a third principle -- know thy hardware.}}
 +
 
 +
==== Old-School (BIOS/MBR) Method ====
 +
 
 +
{{Note|Use this method if you are booting using your BIOS, and if your System Rescue CD initial boot menu was light blue. If you're going to use the new-school method, [[#New-School (UEFI/GPT) Method|click here to jump down to UEFI/GPT.]]}}
 +
 
 +
===== Preparation =====
 +
 
 +
First, it's a good idea to make sure that you've found the correct hard disk to partition. Try this command and verify that <code>/dev/sda</code> is the disk that you want to partition:
  
 
<console>
 
<console>
# ##i##date
+
# ##i##fdisk -l /dev/sda
Fri Jul 15 19:47:18 UTC 2011
+
 
 +
Disk /dev/sda: 640.1 GB, 640135028736 bytes, 1250263728 sectors
 +
Units = sectors of 1 * 512 = 512 bytes
 +
Sector size (logical/physical): 512 bytes / 512 bytes
 +
I/O size (minimum/optimal): 512 bytes / 512 bytes
 +
Disk label type: gpt
 +
 
 +
 
 +
#        Start          End    Size  Type            Name
 +
1        2048  1250263694  596.2G  Linux filesyste Linux filesystem
 
</console>
 
</console>
  
If the date and/or time need to be corrected, do so using <code>date MMDDhhmmYYYY</code>, keeping in mind <code>hhmm</code> are in 24-hour format. The example below changes the date and time to "July 16th, 2011 @ 8:00PM" UTC:
+
Now, it's recommended that you erase any existing MBR or GPT partition tables on the disk, which could confuse the system's BIOS at boot time. We do this using <code>sgdisk</code>:
 +
{{fancywarning|This will make any existing partitions inaccessible! You are '''strongly''' cautioned and advised to backup any critical data before proceeding.}}
  
 
<console>
 
<console>
# ##i##date 071620002011
+
# ##i##sgdisk --zap-all /dev/sda
Fri Jul 16 20:00:00 UTC 2011
+
 
 +
Creating new GPT entries.
 +
GPT data structures destroyed! You may now partition the disk using fdisk or
 +
other utilities.
 
</console>
 
</console>
  
Once you have set the system clock, it's a very good idea to copy the time to the hardware clock, so it persists across reboots:
+
This output is also nothing to worry about, as the command still succeded:
  
 
<console>
 
<console>
# ##i##hwclock --systohc
+
***************************************************************
 +
Found invalid GPT and valid MBR; converting MBR to GPT format
 +
in memory.
 +
***************************************************************
 
</console>
 
</console>
  
=== Installing the Stage 3 tarball ===
+
===== Partitioning =====
  
Now that filesystems are created and your hardware and system clock are set, the next step is downloading the initial Stage 3 tarball. The Stage 3 is a pre-compiled system used as a starting point to install Funtoo Linux.
+
Now we will use <code>fdisk</code> to create the MBR partition table and partitions:
  
To download the correct build of Funtoo Linux for your system, head over to the [[Subarches]] page. Subarches are builds of Funtoo Linux that are designed to run on a particular type of CPU, to offer the best possible performance. They also take advantage of the instruction sets available for each CPU.
+
<console>
 +
# ##i##fdisk /dev/sda
 +
</console>
  
The [[Subarches]] page lists all CPU-optimized versions of Funtoo Linux. Find the one that is appropriate for the type of CPU that your system has, and then click on its name in the first column (such as <code>corei7</code>, for example.) You will then go to a page dedicated to that subarch, and the available stage3's available for download will be listed.
+
Within <code>fdisk</code>, follow these steps:
  
For most subarches, you will have several stage3's available to choose from. This next section will help you understand which one to pick.
+
'''Empty the partition table''':
  
==== Which Build? ====
+
<console>
 +
Command (m for help): ##i##o ↵
 +
</console>
  
'''If you're not sure, pick <code>funtoo-current</code>.'''
+
'''Create Partition 1''' (boot):
  
Funtoo Linux has various different 'builds':
+
<console>
 +
Command (m for help): ##i##n ↵
 +
Partition type (default p): ##i##↵
 +
Partition number (1-4, default 1): ##i##↵
 +
First sector: ##i##↵
 +
Last sector: ##i##+128M ↵
 +
</console>
  
{{TableStart}}
+
'''Create Partition 2''' (swap):
<tr><th class="info">Build</th><th class="info">Description</th></tr>
+
<tr><td><code>funtoo-current</code></td><td>The most commonly-selected build of Funtoo Linux. Receives rapid updates and preferred by desktop users.</td></tr>
+
<tr><td><code>funtoo-stable</code></td><td>Emphasizes less-frequent package updates and trusted, reliable versions of packages over the latest versions.</td></tr>
+
{{TableEnd}}
+
  
==== Which Variant? ====
+
<console>
 +
Command (m for help): ##i##n ↵
 +
Partition type (default p): ##i##↵
 +
Partition number (2-4, default 2): ##i##↵
 +
First sector: ##i##↵
 +
Last sector: ##i##+2G ↵
 +
Command (m for help): ##i##t ↵
 +
Partition number (1,2, default 2): ##i## ↵
 +
Hex code (type L to list all codes): ##i##82 ↵
 +
</console>
  
'''If you're not sure, pick <code>(None)</code>.'''
+
'''Create the root partition:'''
  
Besides our "regular" stage3's (listed with a variant of <code>(None)</code>, the following variant builds are available:
+
<console>
 +
Command (m for help): ##i##n ↵
 +
Partition type (default p): ##i##↵
 +
Partition number (3,4, default 3): ##i##↵
 +
First sector: ##i##↵
 +
Last sector: ##i##↵
 +
</console>
  
{{TableStart}}
+
'''Verify the partition table:'''
<tr><th class="info">Variant</th><th class="info">Description</th></tr>
+
<tr><td>(None)</td><td>The "standard" version of Funtoo Linux</td></tr>
+
<tr><td><code>pure64</code></td><td>A 64-bit build that drops multilib (32-bit compatibility) support. Can be ideal for server systems.</td></tr>
+
<tr><td><code>hardened</code></td><td>Includes PIE/SSP toolchain for enhanced security. PIE does require the use of PaX in the kernel, while SSP works with any kernel, and provides enhanced security in user-space to avoid stack-based exploits.</td></tr>
+
{{TableEnd}}
+
  
==== Download the Stage3 ====
+
<console>
 +
Command (m for help): ##i##p
  
Once you have found the stage3 that you would like to download, use <code>wget</code> to download the Stage 3 tarball you have chosen to use as the basis for your new Funtoo Linux system. It should be saved to the <code>/mnt/funtoo</code> directory as follows:
+
Disk /dev/sda: 298.1 GiB, 320072933376 bytes, 625142448 sectors
 +
Units: sectors of 1 * 512 = 512 bytes
 +
Sector size (logical/physical): 512 bytes / 512 bytes
 +
I/O size (minimum/optimal): 512 bytes / 512 bytes
 +
Disklabel type: dos
 +
Disk identifier: 0x82abc9a6
  
<console># ##i##cd /mnt/funtoo
+
Device    Boot    Start      End    Blocks  Id System
# ##i##wget http://build.funtoo.org/funtoo-current/x86-64bit/generic_64/stage3-latest.tar.xz
+
/dev/sda1          2048    264191    131072  83 Linux
 +
/dev/sda2        264192  4458495  2097152  82 Linux swap / Solaris
 +
/dev/sda3        4458496 625142447 310341976  83 Linux
 
</console>
 
</console>
  
Note that 64-bit systems can run 32-bit or 64-bit stages, but 32-bit systems can only run 32-bit stages. Make sure that you select a Stage 3 build that is appropriate for your CPU. If you are not certain, it is a safe bet to choose the <code>generic_64</code> or <code>generic_32</code> stage. Consult the [[Subarches]] page for more information.
+
'''Write the parition table to disk:'''
  
Once the stage is downloaded, extract the contents with the following command, substituting in the actual name of your stage 3 tarball:
 
 
<console>
 
<console>
# ##i##tar xpf stage3-latest.tar.xz
+
Command (m for help): ##i##w
 
</console>
 
</console>
  
{{important|It is very important to use <code>tar's</code> "<code>'''p'''</code>" option when extracting the Stage 3 tarball - it tells <code>tar</code> to ''preserve'' any permissions and ownership that exist within the archive. Without this option, your Funtoo Linux filesystem permissions will be incorrect.}}
+
Your new MBR partition table will now be written to your system disk.
 +
 
 +
{{Note|You're done with partitioning! Now, jump over to [[#Creating filesystems|Creating filesystems]].}}
 +
 
 +
==== New-School (UEFI/GPT) Method ====
 +
 
 +
{{Note|Use this method if you are booting using UEFI, and if your System Rescue CD initial boot menu was black and white. If it was light blue, this method will not work.}}
 +
 
 +
The <tt>gdisk</tt> commands to create a GPT partition table are as follows. Adapt sizes as necessary, although these defaults will work for most users. Start <code>gdisk</code>:
 +
 
 +
<console>
 +
# ##i##gdisk
 +
</console>
 +
 
 +
Within <tt>gdisk</tt>, follow these steps:
 +
 
 +
'''Create a new empty partition table''' (This ''will'' erase all data on the disk when saved):
 +
 
 +
<console>
 +
Command: ##i##o ↵
 +
This option deletes all partitions and creates a new protective MBR.
 +
Proceed? (Y/N): ##i##y ↵
 +
</console>
 +
 
 +
'''Create Partition 1''' (boot):
 +
 
 +
<console>
 +
Command: ##i##n ↵
 +
Partition Number: ##i##1 ↵
 +
First sector: ##i##↵
 +
Last sector: ##i##+500M ↵
 +
Hex Code: ##i##↵
 +
</console>
 +
 
 +
'''Create Partition 2''' (swap):
 +
 
 +
<console>
 +
Command: ##i##n ↵
 +
Partition Number: ##i##2 ↵
 +
First sector: ##i##↵
 +
Last sector: ##i##+4G ↵
 +
Hex Code: ##i##8200 ↵
 +
</console>
 +
 
 +
'''Create Partition 3''' (root):
 +
 
 +
<console>
 +
Command: ##i##n ↵
 +
Partition Number: ##i##3 ↵
 +
First sector: ##i##↵
 +
Last sector: ##i##↵##!i## (for rest of disk)
 +
Hex Code: ##i##↵
 +
</console>
 +
 
 +
Along the way, you can type "<tt>p</tt>" and hit Enter to view your current partition table. If you make a mistake, you can type "<tt>d</tt>" to delete an existing partition that you created. When you are satisfied with your partition setup, type "<tt>w</tt>" to write your configuration to disk:
 +
 
 +
'''Write Partition Table To Disk''':
 +
 
 +
<console>
 +
Command: ##i##w ↵
 +
Do you want to proceed? (Y/N): ##i##Y ↵
 +
</console>
 +
 
 +
The partition table will now be written to disk and <tt>gdisk</tt> will close.
 +
 
 +
Now, your GPT/GUID partitions have been created, and will show up as the following ''block devices'' under Linux:
 +
 
 +
* <tt>/dev/sda1</tt>, which will be used to hold the <tt>/boot</tt> filesystem,
 +
* <tt>/dev/sda2</tt>, which will be used for swap space, and
 +
* <tt>/dev/sda3</tt>, which will hold your root filesystem.
 +
 
 +
==== Creating filesystems ====
 +
 
 +
{{Note|This section covers both BIOS ''and'' UEFI installs. Don't skip it!}}
 +
 
 +
Before your newly-created partitions can be used, the block devices need to be initialized with filesystem ''metadata''. This process is known as ''creating a filesystem'' on the block devices. After filesystems are created on the block devices, they can be mounted and used to store files.
 +
 
 +
Let's keep this simple. Are you using old-school MBR partitions? If so, let's create an ext2 filesystem on /dev/sda1:
 +
 
 +
<console>
 +
# ##i##mkfs.ext2 /dev/sda1
 +
</console>
 +
 
 +
If you're using new-school GPT partitions for UEFI, you'll want to create a vfat filesystem on /dev/sda1, because this is what UEFI is able to read:
 +
 
 +
<console>
 +
# ##i##mkfs.vfat -F 32 /dev/sda1
 +
</console>
 +
 
 +
Now, let's create a swap partition. This partition will be used as disk-based virtual memory for your Funtoo Linux system.
 +
 
 +
You will not create a filesystem on your swap partition, since it is not used to store files. But it is necessary to initialize it using the <code>mkswap</code> command. Then we'll run the <code>swapon</code> command to make your newly-initialized swap space immediately active within the live CD environment, in case it is needed during the rest of the install process:
 +
 
 +
<console>
 +
# ##i##mkswap /dev/sda2
 +
# ##i##swapon /dev/sda2
 +
</console>
 +
 
 +
Now, we need to create a root filesystem. This is where Funtoo Linux will live. We generally recommend ext4 or XFS root filesystems. If you're not sure, choose ext4. Here's how to create a root ext4 filesystem:
 +
 
 +
<console>
 +
# ##i##mkfs.ext4 /dev/sda3
 +
</console>
 +
 
 +
...and here's how to create an XFS root filesystem, if you choose to use XFS:
 +
 
 +
<console>
 +
# ##i##mkfs.xfs /dev/sda3
 +
</console>
 +
 
 +
Your filesystems (and swap) have all now been initialized, so that that can be mounted (attached to your existing directory heirarchy) and used to store files. We are ready to begin installing Funtoo Linux on these brand-new filesystems.
 +
 
 +
{{fancywarning|1=
 +
When deploying an OpenVZ host, please use ext4 exclusively. The Parallels development team tests extensively with ext4, and modern versions of <code>openvz-rhel6-stable</code> are '''not''' compatible with XFS, and you may experience kernel bugs.
 +
}}
 +
 
 +
==== Mounting filesystems ====
 +
 
 +
Mount the newly-created filesystems as follows, creating <code>/mnt/funtoo</code> as the installation mount point:
 +
 
 +
<console>
 +
# ##i##mkdir /mnt/funtoo
 +
# ##i##mount /dev/sda3 /mnt/funtoo
 +
# ##i##mkdir /mnt/funtoo/boot
 +
# ##i##mount /dev/sda1 /mnt/funtoo/boot
 +
</console>
 +
 
 +
Optionally, if you have a separate filesystem for <code>/home</code> or anything else:
 +
 
 +
<console>
 +
# ##i##mkdir /mnt/funtoo/home
 +
# ##i##mount /dev/sda4 /mnt/funtoo/home
 +
</console>
 +
 
 +
If you have <code>/tmp</code> or <code>/var/tmp</code> on a separate filesystem, be sure to change the permissions of the mount point to be globally-writeable after mounting, as follows:
 +
 
 +
<console>
 +
# ##i##chmod 1777 /mnt/funtoo/tmp
 +
</console>

Revision as of 07:43, December 29, 2014


Note

This is a template that is used as part of the Installation instructions which covers: the process of partitioning and filesystem creation. Templates are being used to allow multiple variant install guides that use most of the same re-usable parts.


Prepare Hard Disk

In this section, we'll learn about the different ways that Funtoo Linux can be installed on -- and boot from -- a hard disk.

Introduction

In earlier times, there was only one way to boot a PC-compatible computer. All of our desktops and servers had a standard PC BIOS, all our hard drives used Master Boot Records to boot the system, and our hard drives were partitioned into different regions using the MBR partition scheme. That was just how it was done. And we liked it that way!

Then, along came EFI and UEFI, which are new-style firmware designed to boot systems, along with GPT partition tables to support disks larger than 2.2TB. All of the sudden, we had a variety of options to boot Linux systems, turning what once was a one-method-fits-all approach into something a lot more complex.

Let's take a moment to review the options available to you for configuring a hard drive to boot Funtoo Linux. This Install Guide uses, and recommends, the old-school method of BIOS booting and using an MBR. It works. There's nothing wrong with it. If your system disk is 2TB or smaller in size, it won't prevent you from using all of your disk's capacity, either.

But, there are some situations where the old-school method isn't optimal. If you have a system disk >2TB in size, then MBR partitions won't allow you to access all your storage. So that's one reason. Another reason is that there are some so-called "PC" systems out there that don't support BIOS booting anymore, and force you to use UEFI to boot. So, out of compassion for people who fall into this predicament, this Install Guide documents UEFI booting too.

Our recommendation is still to go old-school unless you have reason not to. We call this method the BIOS + GRUB (MBR) method. It's the traditional method of setting up a PC-compatible system to boot Linux.

If you need to use UEFI to boot, we recommend not using the MBR at all for booting, as some systems support this, but others don't. Instead, we recommend using UEFI to boot GRUB, which in turn will load Linux. We refer to this method as the UEFI + GRUB (GPT) method.

And yes, there are even more methods, some of which are documented on the Boot Methods page. We used to recommend a BIOS + GRUB (GPT) method but it is not consistently supported across a wide variety of hardware.

The big question is -- which boot method should you use? Here's how to tell.

Principle 1 - Old School
If you can reliably boot System Rescue CD and it shows you an initial light blue menu, you are booting the CD using the BIOS, and it's likely that you can thus boot Funtoo Linux using the BIOS. So, go old-school and use BIOS booting, unless you have some reason to use UEFI, such as having a >2.2TB system disk. In that case, see Principle 2, as your system may also support UEFI booting.
Principle 2 - New School
If you can reliably boot System Rescue CD and it shows you an initial black and white menu -- congratulations, your system is configured to support UEFI booting. This means that you are ready to install Funtoo Linux to boot via UEFI. Your system may still support BIOS booting, but just be trying UEFI first. You can poke around in your BIOS boot configuration and play with this.
What's the Big Difference between Old School and New School?
Here's the deal. If you go with old-school MBR partitions, your /boot partition will be an ext2 filesystem, and you'll use fdisk to create your MBR partitions. If you go with new-school GPT partitions and UEFI booting, your /boot partition will be a vfat filesystem, because this is what UEFI is able to read, and you will use gdisk to create your GPT partitions. And you'll install GRUB a bit differently. That's about all it comes down to, in case you were curious.
Note

Some motherboards may appear to support UEFI, but don't. Do your research. For example, the Award BIOS in my Gigabyte GA-990FXA-UD7 rev 1.1 has an option to enable UEFI boot for CD/DVD. This is not sufficient for enabling UEFI boot for hard drives and installing Funtoo Linux. UEFI must be supported for both removable media (so you can boot System Rescue CD using UEFI) as well as fixed media (so you can boot your new Funtoo Linux installation.) It turns out that later revisions of this board (rev 3.0) have a new BIOS that fully supports UEFI boot. This may point to a third principle -- know thy hardware.

Old-School (BIOS/MBR) Method

Note

Use this method if you are booting using your BIOS, and if your System Rescue CD initial boot menu was light blue. If you're going to use the new-school method, click here to jump down to UEFI/GPT.

Preparation

First, it's a good idea to make sure that you've found the correct hard disk to partition. Try this command and verify that /dev/sda is the disk that you want to partition:

# fdisk -l /dev/sda

Disk /dev/sda: 640.1 GB, 640135028736 bytes, 1250263728 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt


#         Start          End    Size  Type            Name
 1         2048   1250263694  596.2G  Linux filesyste Linux filesystem

Now, it's recommended that you erase any existing MBR or GPT partition tables on the disk, which could confuse the system's BIOS at boot time. We do this using sgdisk:

Warning

This will make any existing partitions inaccessible! You are strongly cautioned and advised to backup any critical data before proceeding.

# sgdisk --zap-all /dev/sda

Creating new GPT entries.
GPT data structures destroyed! You may now partition the disk using fdisk or
other utilities.

This output is also nothing to worry about, as the command still succeded:

***************************************************************
Found invalid GPT and valid MBR; converting MBR to GPT format
in memory. 
***************************************************************
Partitioning

Now we will use fdisk to create the MBR partition table and partitions:

# fdisk /dev/sda

Within fdisk, follow these steps:

Empty the partition table:

Command (m for help): o ↵

Create Partition 1 (boot):

Command (m for help): n ↵
Partition type (default p): 
Partition number (1-4, default 1): 
First sector: 
Last sector: +128M ↵

Create Partition 2 (swap):

Command (m for help): n ↵
Partition type (default p): 
Partition number (2-4, default 2): 
First sector: 
Last sector: +2G ↵
Command (m for help): t ↵ 
Partition number (1,2, default 2): 
Hex code (type L to list all codes): 82 ↵

Create the root partition:

Command (m for help): n ↵
Partition type (default p): 
Partition number (3,4, default 3): 
First sector: 
Last sector: 

Verify the partition table:

Command (m for help): p

Disk /dev/sda: 298.1 GiB, 320072933376 bytes, 625142448 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x82abc9a6

Device    Boot     Start       End    Blocks  Id System
/dev/sda1           2048    264191    131072  83 Linux
/dev/sda2         264192   4458495   2097152  82 Linux swap / Solaris
/dev/sda3        4458496 625142447 310341976  83 Linux

Write the parition table to disk:

Command (m for help): w

Your new MBR partition table will now be written to your system disk.

Note

You're done with partitioning! Now, jump over to Creating filesystems.

New-School (UEFI/GPT) Method

Note

Use this method if you are booting using UEFI, and if your System Rescue CD initial boot menu was black and white. If it was light blue, this method will not work.

The gdisk commands to create a GPT partition table are as follows. Adapt sizes as necessary, although these defaults will work for most users. Start gdisk:

# gdisk

Within gdisk, follow these steps:

Create a new empty partition table (This will erase all data on the disk when saved):

Command: o ↵
This option deletes all partitions and creates a new protective MBR.
Proceed? (Y/N): y ↵

Create Partition 1 (boot):

Command: n ↵
Partition Number: 1 ↵
First sector: 
Last sector: +500M ↵
Hex Code: 

Create Partition 2 (swap):

Command: n ↵
Partition Number: 2 ↵
First sector: 
Last sector: +4G ↵
Hex Code: 8200 ↵

Create Partition 3 (root):

Command: n ↵
Partition Number: 3 ↵
First sector: 
Last sector:  (for rest of disk)
Hex Code: 

Along the way, you can type "p" and hit Enter to view your current partition table. If you make a mistake, you can type "d" to delete an existing partition that you created. When you are satisfied with your partition setup, type "w" to write your configuration to disk:

Write Partition Table To Disk:

Command: w ↵
Do you want to proceed? (Y/N): Y ↵

The partition table will now be written to disk and gdisk will close.

Now, your GPT/GUID partitions have been created, and will show up as the following block devices under Linux:

  • /dev/sda1, which will be used to hold the /boot filesystem,
  • /dev/sda2, which will be used for swap space, and
  • /dev/sda3, which will hold your root filesystem.

Creating filesystems

Note

This section covers both BIOS and UEFI installs. Don't skip it!

Before your newly-created partitions can be used, the block devices need to be initialized with filesystem metadata. This process is known as creating a filesystem on the block devices. After filesystems are created on the block devices, they can be mounted and used to store files.

Let's keep this simple. Are you using old-school MBR partitions? If so, let's create an ext2 filesystem on /dev/sda1:

# mkfs.ext2 /dev/sda1

If you're using new-school GPT partitions for UEFI, you'll want to create a vfat filesystem on /dev/sda1, because this is what UEFI is able to read:

# mkfs.vfat -F 32 /dev/sda1

Now, let's create a swap partition. This partition will be used as disk-based virtual memory for your Funtoo Linux system.

You will not create a filesystem on your swap partition, since it is not used to store files. But it is necessary to initialize it using the mkswap command. Then we'll run the swapon command to make your newly-initialized swap space immediately active within the live CD environment, in case it is needed during the rest of the install process:

# mkswap /dev/sda2
# swapon /dev/sda2

Now, we need to create a root filesystem. This is where Funtoo Linux will live. We generally recommend ext4 or XFS root filesystems. If you're not sure, choose ext4. Here's how to create a root ext4 filesystem:

# mkfs.ext4 /dev/sda3

...and here's how to create an XFS root filesystem, if you choose to use XFS:

# mkfs.xfs /dev/sda3

Your filesystems (and swap) have all now been initialized, so that that can be mounted (attached to your existing directory heirarchy) and used to store files. We are ready to begin installing Funtoo Linux on these brand-new filesystems.

Warning

When deploying an OpenVZ host, please use ext4 exclusively. The Parallels development team tests extensively with ext4, and modern versions of openvz-rhel6-stable are not compatible with XFS, and you may experience kernel bugs.

Mounting filesystems

Mount the newly-created filesystems as follows, creating /mnt/funtoo as the installation mount point:

# mkdir /mnt/funtoo
# mount /dev/sda3 /mnt/funtoo
# mkdir /mnt/funtoo/boot
# mount /dev/sda1 /mnt/funtoo/boot

Optionally, if you have a separate filesystem for /home or anything else:

# mkdir /mnt/funtoo/home
# mount /dev/sda4 /mnt/funtoo/home

If you have /tmp or /var/tmp on a separate filesystem, be sure to change the permissions of the mount point to be globally-writeable after mounting, as follows:

# chmod 1777 /mnt/funtoo/tmp