Difference between pages "Install/Partitioning" and "Install/Scraps"

(Difference between pages)
(Old-School (MBR) Method)
 
(Created page with "{{Note: This page contains scraps that were removed from the Install Guide to preserve the Install Guide's simplicity. We need to find new ways to integrate this content. Or i...")
 
Line 1: Line 1:
<noinclude>
+
{{Note: This page contains scraps that were removed from the Install Guide to preserve the Install Guide's simplicity. We need to find new ways to integrate this content. Or in some cases, this is just random stuff I removed that can be thrown away.}}
{{InstallPart|the process of partitioning and filesystem creation}}
+
</noinclude>
+
=== Prepare Hard Disk ===
+
  
==== Introduction ====
+
If you have a system with UEFI, you will want to use this documentation along with the [[UEFI Install Guide]], which will augment these instructions and explain how to get your system to boot. You may need to change your PC BIOS settings to enable or disable UEFI booting. The [[UEFI Install Guide]] has more information on this, and steps on how to determine if your system supports UEFI.
  
In earlier times, there was only one way to boot a PC-compatible computer. All of our desktops and servers had a standard BIOS, all our hard drives used Master Boot Records, and were partitioned using the MBR partition scheme. And we liked it that way!
+
We also offer a [[ZFS Install Guide]], which augment the instructions on this page for those who want to install Funtoo Linux on ZFS. I
  
Then, along came EFI and UEFI, which are new-style firmware designed to boot systems, along with GPT partition tables to support disks larger than 2.2TB. All of the sudden, we had a variety of options to boot Linux systems, turning what once was a one-method-fits-all approach into something a lot more complex.
+
New  [[F2FS Install Guide]] is in progress  which will augment the instructions on this page for those who want to install Funtoo Linux on F2FS.
  
Let's take a moment to review the boot options available to you. This Install Guide uses, and recommends, the old-school method of BIOS booting and using an MBR. It works. There's nothing wrong with it. If your system disk is 2TB or smaller in size, it won't prevent you from using all of your disk's capacity, either.
 
  
But, there are some situations where the old-school method isn't optimal. If you have a system disk >2TB in size, then MBR partitions won't allow you to access all your storage. So that's one reason. Another reason is that there are some so-called "PC" systems out there that don't support BIOS booting anymore, and force you to use UEFI to boot. So, out of compassion for people who fall into this predicament, this Install Guide documents UEFI booting too.
+
==== Partitions ====
  
Our recommendation is still to go old-school unless you have reason not to. We call this method the '''BIOS + GRUB (MBR)''' method. It's the traditional method of setting up a PC-compatible system to boot Linux.
+
Funtoo Linux fully supports traditional MBR partitions, as well as newer GPT/GUID partition formats. See below to determine which partitioning scheme to use:
  
If you need to use UEFI to boot, we recommend not using the MBR at all for booting, as some systems support this, but others don't. Instead, we recommend using UEFI to boot GRUB, which in turn will load Linux. We refer to this method as the '''UEFI + GRUB (GPT)''' method.
+
===== MBR Partitions =====
  
And yes, there are even more methods, some of which are documented on the [[Boot Methods]] page. We used to recommend a '''BIOS + GRUB (GPT)''' method but it is not consistently supported across a wide variety of hardware.
+
* '''Recommended if your system disk is <=2TB in size'''
 +
* Legacy, DOS partitioning scheme
 +
* Only 4 primary partitions per disk; after that, you must use "logical" partitions
 +
* Does not support 2 TB+ disks for booting
 +
* Compatible with certain problematic systems (such as the HP ProBook 4520)
 +
* Dual-boot with Windows for BIOS systems (Windows handle GPT only on true EFI systems, whatever version it is)
 +
* Multiple boot loader options, e.g. GRUB 2, GRUB Legacy, lilo
  
'''The big question is -- which boot method should you use?''' Here's how to tell.
+
{{fancynote|Due to the fact that it is more widely supported on PC hardware, it is best to use MBR partitions if possible.}}
  
;Principle 1 - Old School: If you can reliably boot System Rescue CD and it shows you an initial light blue menu, you are booting the CD using the BIOS, and it's likely that you can thus boot Funtoo Linux using the BIOS. So, go old-school and use BIOS booting, ''unless'' you have some reason to use UEFI, such as having a >2.2TB system disk. In that case, see Principle 2, as your system may also support UEFI booting.
+
===== GPT Partitions =====
  
;Principle 2 - New School: If you can reliably boot System Rescue CD and it shows you an initial black and white menu -- congratulations, your system is configured to support UEFI booting. This means that you are ready to install Funtoo Linux to boot via UEFI. Your system may still support BIOS booting, but just be trying UEFI first. You can poke around in your BIOS boot configuration and play with this.
+
* '''Recommended if your disk is >2TB in size'''
 +
* Newer format for Linux systems
 +
* Supports 2 TB+ hard drives for booting
 +
* Supports hundreds of partitions per disk of any size
 +
* Requires legacy BIOS boot partition (~32 MB) to be created if system does not use EFI
 +
* Requires bootloader with support for GPT such as GRUB 2, EXTLINUX, or a patched version of GRUB Legacy
  
;What's the Big Difference between Old School and New School?: Here's the deal. If you go with old-school MBR partitions, your <code>/boot</code> partition will be an ext2 filesystem, and you'll use <code>fdisk</code> to create your MBR partitions. If you go with new-school GPT partitions and UEFI booting, your <code>/boot</code> partition will be a vfat filesystem, because this is what UEFI is able to read, and you will use <code>gdisk</code> to create your GPT partitions. And you'll install GRUB a bit differently. That's about all it comes down to, in case you were curious.
+
{{fancyimportant|If you have a system disk that is 2TB or greater and want to use the space beyond 2TB, you ''must'' partition using the GPT/GUID format. Otherwise, MBR is recommended as the most reliable boot method.}}
  
==== Old-School (BIOS/MBR) Method ====
+
For a generation 2 Hyper-V system, the [http://www.ubuntu.com/ Ubuntu] desktop install DVD as of version 14.04.1 works well enough. Gentoo CDs don't support EFI boot, and the System Rescue CD lacks appropriate graphics support for Hyper-V as of version 4.4.0.
  
{{Note|Use this method if you are booting using your BIOS, and if your System Rescue CD initial boot menu was light blue. If you're going to use the new-school method, [[#New-School (UEFI/GPT) Method|click here to jump down to UEFI/GPT.]]}}
+
It is also possible to install Funtoo Linux using many other Linux-based live CDs. Generally, any modern bootable Linux live CD or live USB media will work. See [[Requirements|requirements]] for an overview of what the Live Media must provide to allow a problem-free install of Funtoo Linux.
  
====== Preparation ======
+
To begin a Funtoo Linux installation, download System Rescue CD from:
  
First, it's a good idea to make sure that you've found the correct hard disk to partition. Try this command and verify that <code>/dev/sda</code> is the disk that you want to partition:
+
Or, use your preferred live media. Insert it into your disc drive, and boot from it. I
  
<console>
+
===== Filesystem Resources =====
# ##i##fdisk -l /dev/sda
+
  
Disk /dev/sda: 640.1 GB, 640135028736 bytes, 1250263728 sectors
+
Advanced users may be interested in the following topics:
Units = sectors of 1 * 512 = 512 bytes
+
Sector size (logical/physical): 512 bytes / 512 bytes
+
I/O size (minimum/optimal): 512 bytes / 512 bytes
+
Disk label type: gpt
+
  
 +
* [[GUID Booting Guide]]
 +
* [[LVM Install Guide]]
 +
* [[Rootfs over encrypted lvm]]
 +
* [[Rootfs over encrypted lvm over raid-1 on GPT]]
 +
* '''NEW!''' '''[[ZFS Install Guide]] (Also contains instructions for Rootfs over Encrypted ZFS!)'''
  
#        Start          End    Size  Type            Name
+
===== Partitioning Recommendations =====
1        2048  1250263694  596.2G  Linux filesyste Linux filesystem
+
</console>
+
  
Now, it's recommended that you erase any existing MBR or GPT partition tables on the disk, which could confuse the system's BIOS at boot time. We do this using <code>sgdisk</code>:
+
Below are our partitioning recommendations in table form. For MBR-based partitions, use the MBR Block Device and MBR code columns with <code>fdisk</code>. For GPT-based partitions, use the GPT Block Device and GPT Code columns with <code>gdisk</code>:
{{fancywarning|This will make any existing partitions inaccessible! You are '''strongly''' cautioned and advised to backup any critical data before proceeding.}}
+
  
<console>
+
{{TableStart}}
# ##i##sgdisk --zap-all /dev/sda
+
<tr class="active"><th>Partition</th>
 +
<th>Size</th>
 +
<th>MBR Block Device (<code>fdisk</code>)</th>
 +
<th>GPT Block Device (<code>gdisk</code>)</th>
 +
<th>Filesystem</th>
 +
<th>MBR Code</th>
 +
<th>GPT Code</th>
 +
</tr><tr>
 +
<td><code>/boot</code></td>
 +
<td>512 MB</td>
 +
<td><code>/dev/sda1</code></td>
 +
<td><code>/dev/sda1</code></td>
 +
<td>ext2</td>
 +
<td>83</td>
 +
<td>8300</td>
 +
</tr><tr>
 +
<td>swap</td>
 +
<td>2x RAM for low-memory systems and production servers; otherwise 2GB.</td>
 +
<td><code>/dev/sda2</code></td>
 +
<td><code>/dev/sda3</code></td>
 +
<td>swap (default)</td>
 +
<td>82</td>
 +
<td>8200</td>
 +
</tr><tr>
 +
<td><code>/</code> (root)</td>
 +
<td>Rest of the disk, minimum of 10GB.  Note: to compile the <code>debian-sources</code> kernel, as described later on this page, requires a minimum of 14GB free space in <code>/tmp</code>; consider a minimum of 20GB in this case.</td>
 +
<td><code>/dev/sda3</code></td>
 +
<td><code>/dev/sda4</code></td>
 +
<td>XFS recommended, alternatively ext4</td>
 +
<td>83</td>
 +
<td>8300</td>
 +
</tr><tr>
 +
<td><code>/home</code> (optional) </td>
 +
<td>User storage and media. Typically most of the disk.</td>
 +
<td><code>/dev/sda4</code> (if created)</td>
 +
<td><code>/dev/sda5</code> (if created)</td>
 +
<td>XFS recommended, alternatively ext4</td>
 +
<td>83</td>
 +
<td>8300</td>
 +
</tr><tr>
 +
<td>LVM (optional)</td>
 +
<td>If you want to create an LVM volume.</td>
 +
<td><code>/dev/sda4</code> (PV, if created)</td>
 +
<td><code>/dev/sda5</code> (PV, if created)</td>
 +
<td>LVM PV</td>
 +
<td>8E</td>
 +
<td>8E00</td>
 +
</tr>{{TableEnd}}
  
Creating new GPT entries.
 
GPT data structures destroyed! You may now partition the disk using fdisk or
 
other utilities.
 
</console>
 
  
This output is also nothing to worry about, as the command still succeded:
+
{{note|These install instructions assume you are installing Funtoo Linux to an hard disk using Master Boot Record partition tables (MBR). If you are installing Funtoo Linux on a machine where another OS is installed, there is an existing Linux distribution on your system that you want to keep or any other scenario (such as differing swap size requirements), then you will need to adapt these instructions to suit your needs.}}
  
<console>
+
===== Partitioning Using fdisk (MBR) =====
***************************************************************
+
Found invalid GPT and valid MBR; converting MBR to GPT format
+
in memory.
+
***************************************************************
+
</console>
+
  
====== Partitioning ======
+
{{important|If you need to create a GPT partition table, see [[Partitioning using gdisk]] or [[Partitioning using parted]].}}
  
Now we will use <code>fdisk</code> to create the MBR partition table and partitions:
+
<code>fdisk</code> is the tool used to create an MBR partition table. MBR is well-supported on PCs and is recommended if your system disk is 2TB or smaller.
  
<console>
+
==== Partitioning Using gdisk ====
# ##i##fdisk /dev/sda
+
</console>
+
  
Within <code>fdisk</code>, follow these steps:
+
===== Notes Before We Begin =====
  
'''Empty the partition table''':
+
These install instructions assume you are installing Funtoo Linux to an empty hard disk using GUID partition tables (GPT). If you are installing Funtoo Linux on a machine where another OS is installed, or there is an existing Linux distribution on your system that you want to keep, then you will need to adapt these instructions to suit your needs.
  
<console>
+
If you are going to create a legacy MBR partition table instead of GUID/GPT, you will use the <tt>fdisk</tt> command instead of <tt>gdisk</tt>, and you will not need to create the GRUB boot loader partition. See the table under [[#Partitioning Recommendations|Partitioning Recommendations]], in particular the
Command (m for help): ##i##o ↵
+
'''MBR Block Device (<tt>fdisk</tt>)''' and '''MBR Code''' columns. <tt>fdisk</tt> works just like <tt>gdisk</tt>, but creates legacy MBR partition tables instead of the newer GPT/GUID partition tables.
</console>
+
  
'''Create Partition 1''' (boot):
+
Advanced users may be interested in the following topics:
  
<console>
+
* [[GUID Booting Guide]]
Command (m for help): ##i##n ↵
+
* [[Rootfs over encrypted lvm]]
Partition type (default p): ##i##↵
+
* [[Rootfs over encrypted lvm over raid-1 on GPT]]
Partition number (1-4, default 1): ##i##↵
+
* '''NEW!''' '''[[ZFS Install Guide]] (Also contains instructions for Rootfs over Encrypted ZFS!)'''
First sector: ##i##↵
+
Last sector: ##i##+128M ↵
+
</console>
+
  
'''Create Partition 2''' (swap):
+
===== Using gdisk =====
  
<console>
+
The first step after booting SystemRescueCd is to use <tt>gdisk</tt> to create GPT (also known as GUID) partitions, specifying the disk you want to use, which is typically <tt>/dev/sda</tt>, the first disk in the system:
Command (m for help): ##i##n ↵
+
Partition type (default p): ##i##↵
+
Partition number (2-4, default 2): ##i##↵
+
First sector: ##i##↵
+
Last sector: ##i##+2G ↵
+
Command (m for help): ##i##t ↵
+
Partition number (1,2, default 2): ##i## ↵
+
Hex code (type L to list all codes): ##i##82 ↵
+
</console>
+
  
'''Create the root partition:'''
+
<console># ##i##gdisk /dev/sda</console>
 +
You should find <tt>gdisk</tt> very similar to <tt>fdisk</tt>. Here is the partition table we want to end up with:
  
<console>
+
<console>Command (? for help): ##i##p
Command (m for help): ##i##n ↵
+
Disk /dev/sda: 234441648 sectors, 111.8 GiB
Partition type (default p): ##i##↵
+
Logical sector size: 512 bytes
Partition number (3,4, default 3): ##i##↵
+
Disk identifier (GUID): A4E5208A-CED3-4263-BB25-7147DC426931
First sector: ##i##↵
+
Partition table holds up to 128 entries
Last sector: ##i##↵
+
First usable sector is 34, last usable sector is 234441614
</console>
+
Partitions will be aligned on 2048-sector boundaries
 +
Total free space is 2014 sectors (1007.0 KiB)
  
'''Verify the partition table:'''
+
Number  Start (sector)    End (sector)  Size      Code  Name
 +
  1            2048          206847  500.0 MiB  8300  Linux filesystem
 +
  2          206848          272383  32.0 MiB    EF02  BIOS boot partition
 +
  3          272384        8660991  4.0 GiB    8200  Linux swap
 +
  4        8660992      234441614  107.7 GiB  8300  Linux filesystem
  
<console>
+
Command (? for help): </console>
Command (m for help): ##i##p
+
  
Disk /dev/sda: 298.1 GiB, 320072933376 bytes, 625142448 sectors
+
Above, you'll see that we have a 500 MiB boot partition, a 32 MiB "BIOS boot partition" (also known as the GRUB boot loader partition), 4 GiB of swap, and the remaining disk used by a 107.7 GiB root partition.
Units: sectors of 1 * 512 = 512 bytes
+
Sector size (logical/physical): 512 bytes / 512 bytes
+
I/O size (minimum/optimal): 512 bytes / 512 bytes
+
Disklabel type: dos
+
Disk identifier: 0x82abc9a6
+
  
Device    Boot    Start      End    Blocks  Id System
 
/dev/sda1          2048    264191    131072  83 Linux
 
/dev/sda2        264192  4458495  2097152  82 Linux swap / Solaris
 
/dev/sda3        4458496 625142447 310341976  83 Linux
 
</console>
 
  
'''Write the parition table to disk:'''
+
{{fancynote|An alternate boot loader called extlinux can be used instead of GRUB if you desire. See the [[Extlinux|extlinux Guide]] for information on how to do this.}}
 
+
<console>
+
Command (m for help): ##i##w
+
</console>
+
 
+
Your new MBR partition table will now be written to your system disk.
+
 
+
==== New-School (UEFI/GPT) Method ====
+
 
+
{{Note|Use this method if you are booting using UEFI, and if your System Rescue CD initial boot menu was black and white. If it was light blue, this method will not work.}}
+
 
+
The <tt>gdisk</tt> commands to create a GPT partition table are as follows. Adapt sizes as necessary, although these defaults will work for most users. Start <code>gdisk</code>:
+
 
+
<console>
+
# ##i##gdisk
+
</console>
+
 
+
Within <tt>gdisk</tt>, follow these steps:
+
 
+
'''Create a new empty partition table''' (This ''will'' erase all data on the disk when saved):
+
 
+
<console>
+
Command: ##i##o ↵
+
This option deletes all partitions and creates a new protective MBR.
+
Proceed? (Y/N): ##i##y ↵
+
</console>
+
 
+
'''Create Partition 1''' (boot):
+
 
+
<console>
+
Command: ##i##n ↵
+
Partition Number: ##i##1 ↵
+
First sector: ##i##↵
+
Last sector: ##i##+500M ↵
+
Hex Code: ##i##↵
+
</console>
+
 
+
'''Create Partition 2''' (swap):
+
 
+
<console>
+
Command: ##i##n ↵
+
Partition Number: ##i##2 ↵
+
First sector: ##i##↵
+
Last sector: ##i##+4G ↵
+
Hex Code: ##i##8200 ↵
+
</console>
+
 
+
'''Create Partition 3''' (root):
+
 
+
<console>
+
Command: ##i##n ↵
+
Partition Number: ##i##3 ↵
+
First sector: ##i##↵
+
Last sector: ##i##↵##!i## (for rest of disk)
+
Hex Code: ##i##↵
+
</console>
+
 
+
Along the way, you can type "<tt>p</tt>" and hit Enter to view your current partition table. If you make a mistake, you can type "<tt>d</tt>" to delete an existing partition that you created. When you are satisfied with your partition setup, type "<tt>w</tt>" to write your configuration to disk:
+
 
+
'''Write Partition Table To Disk''':
+
 
+
<console>
+
Command: ##i##w ↵
+
Do you want to proceed? (Y/N): ##i##Y ↵
+
</console>
+
 
+
The partition table will now be written to disk and <tt>gdisk</tt> will close.
+
 
+
Now, your GPT/GUID partitions have been created, and will show up as the following ''block devices'' under Linux:
+
 
+
* <tt>/dev/sda1</tt>, which will be used to hold the <tt>/boot</tt> filesystem,
+
* <tt>/dev/sda2</tt>, which will be used for swap space, and
+
* <tt>/dev/sda3</tt>, which will hold your root filesystem.
+
 
+
==== Creating filesystems ====
+
 
+
Before your newly-created partitions can be used, the block devices need to be initialized with filesystem ''metadata''. This process is known as ''creating a filesystem'' on the block devices. After filesystems are created on the block devices, they can be mounted and used to store files.
+
 
+
Let's keep this simple. Are you using old-school MBR partitions? If so, let's create an ext2 filesystem on /dev/sda1:
+
 
+
<console>
+
# ##i##mkfs.ext2 /dev/sda1
+
</console>
+
 
+
If you're using new-school GPT partitions for UEFI, you'll want to create a vfat filesystem on /dev/sda1, because this is what UEFI is able to read:
+
 
+
<console>
+
# ##i##mkfs.vfat -F 32 /dev/sda1
+
</console>
+
 
+
Now, let's create a swap partition. This partition will be used as disk-based virtual memory for your Funtoo Linux system.
+
 
+
You will not create a filesystem on your swap partition, since it is not used to store files. But it is necessary to initialize it using the <code>mkswap</code> command. Then we'll run the <code>swapon</code> command to make your newly-initialized swap space immediately active within the live CD environment, in case it is needed during the rest of the install process:
+
 
+
<console>
+
# ##i##mkswap /dev/sda2
+
# ##i##swapon /dev/sda2
+
</console>
+
 
+
Now, we need to create a root filesystem. This is where Funtoo Linux will live. We generally recommend ext4 or XFS root filesystems. If you're not sure, choose ext4. Here's how to create a root ext4 filesystem:
+
 
+
<console>
+
# ##i##mkfs.ext4 /dev/sda3
+
</console>
+
 
+
...and here's how to create an XFS root filesystem, if you choose to use XFS:
+
 
+
<console>
+
# ##i##mkfs.xfs /dev/sda3
+
</console>
+
 
+
Your filesystems (and swap) have all now been initialized, so that that can be mounted (attached to your existing directory heirarchy) and used to store files. We are ready to begin installing Funtoo Linux on these brand-new filesystems.
+
 
+
{{fancywarning|1=
+
When deploying an OpenVZ host, please use ext4 exclusively. The Parallels development team tests extensively with ext4, and modern versions of <code>openvz-rhel6-stable</code> are '''not''' compatible with XFS, and you may experience kernel bugs.
+
}}
+
 
+
==== Mounting filesystems ====
+
 
+
Mount the newly-created filesystems as follows, creating <code>/mnt/funtoo</code> as the installation mount point:
+
 
+
<console>
+
# ##i##mkdir /mnt/funtoo
+
# ##i##mount /dev/sda3 /mnt/funtoo
+
# ##i##mkdir /mnt/funtoo/boot
+
# ##i##mount /dev/sda1 /mnt/funtoo/boot
+
</console>
+
 
+
Optionally, if you have a separate filesystem for <code>/home</code> or anything else:
+
 
+
<console>
+
# ##i##mkdir /mnt/funtoo/home
+
# ##i##mount /dev/sda4 /mnt/funtoo/home
+
</console>
+
 
+
If you have <code>/tmp</code> or <code>/var/tmp</code> on a separate filesystem, be sure to change the permissions of the mount point to be globally-writeable after mounting, as follows:
+
 
+
<console>
+
# ##i##chmod 1777 /mnt/funtoo/tmp
+
</console>
+

Revision as of 23:53, November 18, 2014

Template:Note: This page contains scraps that were removed from the Install Guide to preserve the Install Guide's simplicity. We need to find new ways to integrate this content. Or in some cases, this is just random stuff I removed that can be thrown away.

If you have a system with UEFI, you will want to use this documentation along with the UEFI Install Guide, which will augment these instructions and explain how to get your system to boot. You may need to change your PC BIOS settings to enable or disable UEFI booting. The UEFI Install Guide has more information on this, and steps on how to determine if your system supports UEFI.

We also offer a ZFS Install Guide, which augment the instructions on this page for those who want to install Funtoo Linux on ZFS. I

New F2FS Install Guide is in progress which will augment the instructions on this page for those who want to install Funtoo Linux on F2FS.


Partitions

Funtoo Linux fully supports traditional MBR partitions, as well as newer GPT/GUID partition formats. See below to determine which partitioning scheme to use:

MBR Partitions
  • Recommended if your system disk is <=2TB in size
  • Legacy, DOS partitioning scheme
  • Only 4 primary partitions per disk; after that, you must use "logical" partitions
  • Does not support 2 TB+ disks for booting
  • Compatible with certain problematic systems (such as the HP ProBook 4520)
  • Dual-boot with Windows for BIOS systems (Windows handle GPT only on true EFI systems, whatever version it is)
  • Multiple boot loader options, e.g. GRUB 2, GRUB Legacy, lilo

Note

Due to the fact that it is more widely supported on PC hardware, it is best to use MBR partitions if possible.

GPT Partitions
  • Recommended if your disk is >2TB in size
  • Newer format for Linux systems
  • Supports 2 TB+ hard drives for booting
  • Supports hundreds of partitions per disk of any size
  • Requires legacy BIOS boot partition (~32 MB) to be created if system does not use EFI
  • Requires bootloader with support for GPT such as GRUB 2, EXTLINUX, or a patched version of GRUB Legacy

Important

If you have a system disk that is 2TB or greater and want to use the space beyond 2TB, you must partition using the GPT/GUID format. Otherwise, MBR is recommended as the most reliable boot method.

For a generation 2 Hyper-V system, the Ubuntu desktop install DVD as of version 14.04.1 works well enough. Gentoo CDs don't support EFI boot, and the System Rescue CD lacks appropriate graphics support for Hyper-V as of version 4.4.0.

It is also possible to install Funtoo Linux using many other Linux-based live CDs. Generally, any modern bootable Linux live CD or live USB media will work. See requirements for an overview of what the Live Media must provide to allow a problem-free install of Funtoo Linux.

To begin a Funtoo Linux installation, download System Rescue CD from:

Or, use your preferred live media. Insert it into your disc drive, and boot from it. I

Filesystem Resources

Advanced users may be interested in the following topics:

Partitioning Recommendations

Below are our partitioning recommendations in table form. For MBR-based partitions, use the MBR Block Device and MBR code columns with fdisk. For GPT-based partitions, use the GPT Block Device and GPT Code columns with gdisk:

Partition Size MBR Block Device (fdisk) GPT Block Device (gdisk) Filesystem MBR Code GPT Code
/boot 512 MB /dev/sda1 /dev/sda1 ext2 83 8300
swap 2x RAM for low-memory systems and production servers; otherwise 2GB. /dev/sda2 /dev/sda3 swap (default) 82 8200
/ (root) Rest of the disk, minimum of 10GB. Note: to compile the debian-sources kernel, as described later on this page, requires a minimum of 14GB free space in /tmp; consider a minimum of 20GB in this case. /dev/sda3 /dev/sda4 XFS recommended, alternatively ext4 83 8300
/home (optional) User storage and media. Typically most of the disk. /dev/sda4 (if created) /dev/sda5 (if created) XFS recommended, alternatively ext4 83 8300
LVM (optional) If you want to create an LVM volume. /dev/sda4 (PV, if created) /dev/sda5 (PV, if created) LVM PV 8E 8E00


Note

These install instructions assume you are installing Funtoo Linux to an hard disk using Master Boot Record partition tables (MBR). If you are installing Funtoo Linux on a machine where another OS is installed, there is an existing Linux distribution on your system that you want to keep or any other scenario (such as differing swap size requirements), then you will need to adapt these instructions to suit your needs.

Partitioning Using fdisk (MBR)

Important

If you need to create a GPT partition table, see Partitioning using gdisk or Partitioning using parted.

fdisk is the tool used to create an MBR partition table. MBR is well-supported on PCs and is recommended if your system disk is 2TB or smaller.

Partitioning Using gdisk

Notes Before We Begin

These install instructions assume you are installing Funtoo Linux to an empty hard disk using GUID partition tables (GPT). If you are installing Funtoo Linux on a machine where another OS is installed, or there is an existing Linux distribution on your system that you want to keep, then you will need to adapt these instructions to suit your needs.

If you are going to create a legacy MBR partition table instead of GUID/GPT, you will use the fdisk command instead of gdisk, and you will not need to create the GRUB boot loader partition. See the table under Partitioning Recommendations, in particular the MBR Block Device (fdisk) and MBR Code columns. fdisk works just like gdisk, but creates legacy MBR partition tables instead of the newer GPT/GUID partition tables.

Advanced users may be interested in the following topics:

Using gdisk

The first step after booting SystemRescueCd is to use gdisk to create GPT (also known as GUID) partitions, specifying the disk you want to use, which is typically /dev/sda, the first disk in the system:

# gdisk /dev/sda

You should find gdisk very similar to fdisk. Here is the partition table we want to end up with:

Command (? for help): p
Disk /dev/sda: 234441648 sectors, 111.8 GiB
Logical sector size: 512 bytes
Disk identifier (GUID): A4E5208A-CED3-4263-BB25-7147DC426931
Partition table holds up to 128 entries
First usable sector is 34, last usable sector is 234441614
Partitions will be aligned on 2048-sector boundaries
Total free space is 2014 sectors (1007.0 KiB)

Number  Start (sector)    End (sector)  Size       Code  Name
   1            2048          206847   500.0 MiB   8300  Linux filesystem
   2          206848          272383   32.0 MiB    EF02  BIOS boot partition
   3          272384         8660991   4.0 GiB     8200  Linux swap
   4         8660992       234441614   107.7 GiB   8300  Linux filesystem

Command (? for help): 

Above, you'll see that we have a 500 MiB boot partition, a 32 MiB "BIOS boot partition" (also known as the GRUB boot loader partition), 4 GiB of swap, and the remaining disk used by a 107.7 GiB root partition.


Note

An alternate boot loader called extlinux can be used instead of GRUB if you desire. See the extlinux Guide for information on how to do this.