Difference between pages "UEFI Install Guide" and "Subarches"

(Difference between pages)
 
(corei7)
 
Line 1: Line 1:
This tutorial will show you how to install Funtoo on a UEFI system. UEFI, also known as the [[Wikipedia:Unified Extensible Firmware Interface|Unified Extensible Firmware Interface]], is a new firmware interface that is used on some newer computers as a replacement for the traditional PC BIOS. It has an integrated boot loader, so setting up booting is different.  
+
{{:Install/Header}}
 +
= Funtoo Linux Sub-Architectures =
 +
__NOTITLE__
 +
This page provides an overview of Funtoo Linux sub-architectures (also called ''subarches'',) designed for quick and easy reference. While this information is available in other places, such as Wikipedia, it often takes some time to study and cross-reference the various articles to get a good understanding of each type of sub-architecture, and this information generally isn't all collected neatly in one place. That is the purpose of this page. When possible, links to more detailed Wikipedia pages are provided. You are encouraged to help maintain this page as well as the Wikipedia articles referenced here.
  
This tutorial is meant to be an "overlay" over the Regular Funtoo Installation. Follow the normal installation and only follow steps in this tutorial when dealing with partitioning and configuring the boot loader (GRUB). All steps are otherwise identical to the regular installation process.
+
== 64-bit Suport (Generic) ==
  
== What Are We Doing? ==
+
=== generic_64 ===
 +
<console>
 +
CFLAGS: -mtune=generic -O2 -pipe
 +
CHOST: x86_64-pc-linux-gnu
 +
USE: mmx sse sse2
 +
</console>
  
This guide will show you how to set up your UEFI system to load the GRUB boot loader, which will then load your Funtoo Linux kernel and initramfs. This is the "UEFI + GRUB" method as described on the [[Boot Methods]] page.
+
The '''generic_64''' subarch is designed to support 64-bit PC-compatible CPUs, such as the [[Wikipedia:AMD_K8|AMD K8-series processors]], which were introduced in late 2003. They were notable as the first processors that supported the [[Wikipedia:X86-64|AMD64 (also called X86-64) 64-bit instruction set]] for PC-compatible systems, which was introduced as a backwards-compatible 64-bit alternative to Intel's IA-64 architecture. Intel followed suit and also began supporting this 64-bit instruction set, which they called "[[Wikipedia:X86-64#Intel_64|Intel 64]]", by releasing X86-64 64-bit compatible CPUs from mid-2004 onwards (See [[Wikipedia:X86-64#Intel_64_implementations|Intel 64 implementations]].)
  
== First Steps ==
+
AMD desktop 64-bit CPUs include the Athlon 64, Athlon 64 FX, Athlon 64 X2, Athlon X2, Turion 64, Turion 64 X2 and Sempron series processors. AMD server processors were released under the Opteron brand and have codenames SledgeHammer, Venus, Troy, Athens, Denmark, Italy, Egypt, Santa Ana and Santa Rosa. All Opterons released through late 2006 were based on the K8 microarchitecture with original X86-64 instructions.
  
To install Funtoo Linux on a UEFI system, first you need to boot SysRescueCD in UEFI mode. To do this, enable UEFI in your BIOS, and if necessary disable legacy booting. After some fiddling, you should be able to boot SysRescueCD and get a black and white text menu instead of the traditional aqua/cyan-colored menu. The black and white menu indicates that you booted SysRescueCD in UEFI mode. Once you've accomplished this, you're ready to continue with your Funtoo Linux installation and partition your drive. See below for details.
+
== 64-bit AMD Processors ==
  
{{fancynote|If the <tt>/sys/firmware/efi</tt> directory exists, then you have successfully booted in EFI mode and will be able to configure your Funtoo system to boot in EFI mode. If the directory doesn't exist, fix this first. It is a requirement for setting up EFI booting.}}
+
=== amd64-k10 ===
 +
<console>
 +
CFLAGS: -march=amdfam10 -O2 -pipe
 +
CHOST: x86_64-pc-linux-gnu
 +
USE: mmx sse sse2 sse3 3dnow 3dnowext
 +
</console>
  
== Partitioning ==
+
The '''amd64-k10''' subarch provides support for the [[Wikipedia:AMD_10h|AMD Family 10h processors]], which were released in late 2007 as a successor to the AMD K8 series processors.
  
To set up your partitions for UEFI booting, you will create a ~500MB FAT32 partition on <tt>/dev/sda1</tt>, and set it to type <tt>EF00</tt> using <tt>gdisk</tt>.  
+
Desktop amd64-k10 CPUs include [[Wikipedia:AMD Phenom|AMD Phenom]], [[Wikipedia:AMD_10h#Phenom_II_Models|AMD Phenom II]] and [[Wikipedia:AMD_10h#Athlon_II_Models|AMD Athlon II]]. Server CPUs include Opterons with codenames Budapest, Barcelona, Suzuka, Shanghai, Istanbul, Lisbon, and Magny-Cours. A full listing of amd64-k10 Opteron models [[Wikipedia:List_of_AMD_Opteron_microprocessors#K10_based_Opterons|can be found here]].
  
 +
=== amd64-bulldozer ===
 
<console>
 
<console>
Command: ##i##n ↵
+
CFLAGS: -march=bdver1 -O2 -pipe
Partition Number: ##i##1 ↵
+
CHOST: x86_64-pc-linux-gnu
First sector: ##i##↵
+
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext
Last sector: ##i##+500M ↵
+
Hex Code: ##i##EF00
+
 
</console>
 
</console>
  
This partition will serve as your Funtoo <tt>/boot</tt> filesystem as well as the partition that the UEFI firmware can read to load GRUB. Then you will set up swap on <tt>/dev/sda2</tt> and your root filesystem on <tt>/dev/sda3</tt>. To create the FAT32 filesystem, type:
+
The '''amd64-bulldozer''' subarch supports the [[Wikipedia:Bulldozer (microarchitecture)|AMD bulldozer microarchitecture]] CPUs, which were released from late 2011 through the first quarter of 2012 as a replacement for the [[Wikipedia:AMD_10h|K10 microarchitecture]] CPUs.
 +
Bulldozer desktop CPUs use the [[Wikipedia:Socket_AM3+|AM3+ socket]] and server CPUs use the [[Wikipedia:Socket_G34|G34 socket]].
  
 +
Desktop bulldozer CPUs include the [[Wikipedia:List_of_AMD_FX_microprocessors#.22Zambezi.22_.2832_nm_SOI.29|Zambezi FX-series CPUs]]. Server bulldozer CPUs include Opterons with codenames Zurich (Opteron 3200-series), Valencia (Opteron 4200-series) and Interlagos (Opteron 6200 series). A complete list of Opteron models [[Wikipedia:http://en.wikipedia.org/wiki/Opteron#Opteron_.2832_nm_SOI.29-_First_Generation_Bulldozer_Microarchitecture|can be found here.]].
 +
 +
=== amd64-piledriver ===
 
<console>
 
<console>
# ##i##mkfs.vfat -F 32 /dev/sda1
+
CFLAGS: -march=bdver2 -O2 -pipe
 +
CHOST: x86_64-pc-linux-gnu
 +
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext
 
</console>
 
</console>
  
Your <tt>/etc/fstab</tt> entry for this filesystem will also differ, and will look like this:
+
The '''amd64-piledriver''' subarch supports the [[Wikipedia:Piledriver (microarchitecture)|AMD Piledriver microarchitecture]] produced by AMD from mid-2012 through 2015, which is the successor to the [[Wikipedia:Bulldozer (microarchitecture)|AMD bulldozer microarchitecture]].
 +
Piledriver CPUs and APUs are available that use the [[Wikipedia:FM2 Socket|FM2 socket]]. Desktop Piledriver CPUs use the [[Wikipedia:Socket_AM3+|AM3+ socket]]. Server Piledriver CPUs use a variety of sockets, including [[Wikipedia:Socket_AM3+|AM3+]], [[Wikipedia:Socket_C32|C32]] and [[Wikipedia:Socket_G34|G34]].
  
<pre>
+
Desktop piledriver CPU and APUs include FX-series with codename Vishera (FX-8350, FX-8370),  [[Wikipedia:List_of_AMD_accelerated_processing_unit_microprocessors#Virgo:_.22Trinity.22_.282012.2C_32_nm.29|A-series with codename Trinity]] (A6-5400K, A10-5800K) and [[Wikipedia:http://en.wikipedia.org/wiki/List_of_AMD_accelerated_processing_unit_microprocessors#.22Richland.22_.282013.2C_32_nm.29_2|A-series with codename Richland]].
/dev/sda1 /boot vfat noatime 1 2
+
</pre>
+
  
== Kernel ==
+
Server piledriver CPUs include Opterons with codenames Delhi (Opteron 3300-series, [[Wikipedia:Socket_AM3+|AM3+]]), Seoul (Opteron 4300-series, [[Wikipedia:Socket_C32|C32]])  and Abu Dhabi (Opteron 6300-series, [[Wikipedia:Socket_G34|G34]]). A full listing of Opteron models [[Wikipedia:Opteron#Opteron_.2832_nm_SOI.29_-_Piledriver_Microarchitecture|is available here]].
  
=== VFAT ===
+
Piledriver adds several new instructions over bulldozer, so AMD bulldozer systems cannot run amd64-piledriver-optimized stages. However, this subarch is  instruction-compatible with its successor, the, so amd64-piledriver stages can run on amd64-steamroller systems, and vice versa.
  
Make sure you add VFAT support to your kernel if you are building it manually.
+
=== amd64-steamroller ===
 +
<console>
 +
CFLAGS: -march=bdver3 -O2 -pipe
 +
CHOST: x86_64-pc-linux-gnu
 +
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext
 +
</console>
  
=== EFI Framebuffer ===
+
The '''amd64-steamroller''' subarch supports the  [[Wikipedia:Steamroller (microarchitecture)|AMD steamroller microarchitecture]], produced from early 2014. It is the successor to the [[Wikipedia:Piledriver (microarchitecture)|AMD Piledriver microarchitecture]].
 +
Steamroller APUs are available that use the [[Wikipedia:FM2+ Socket|FM2+ socket]] and  [[Wikipedia:Socket_FP3|FP3 socket]] (mobile.)
  
If you have the following option enabled in your kernel, then uvesafb and efifb will not be able to detect the framebuffer:
+
Desktop steamroller APUs include the [[Wikipedia:AMD_Accelerated_Processing_Unit#Steamroller_architecture_.282014.29:_Kaveri|A-Series with codename Kaveri]], such as the quad-core AMD A10-7850K APU. Steamroller APUs are also available in mobile versions. Server steamroller APUs will include the Berlin APUs, which are expected to be released some time in 2015.
  
{{kernelop|title=Bus options (PCI etc.)|desc=
+
Amd64-steamroller subarches are instruction-compatible with amd64-piledriver, but add new instructions over amd64-bulldozer.
    [*] Mark VGA/VBE/EFI FB as generic system framebuffer (NEW)
+
}}
+
  
If you have that option enabled, ''you must also enable'':
+
=== amd64-jaguar ===
 +
<console>
 +
CFLAGS: -march=btver2 -O2 -pipe
 +
CHOST: x86_64-pc-linux-gnu
 +
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext
 +
</console>
  
{{kernelop|title=Device Drivers,Graphics support,Frame buffer Devices|desc=
+
The '''amd64-jaguar''' (also called AMD Family 16h) subarch supports the  [[Wikipedia:Jaguar (microarchitecture)|AMD jaguar microarchitecture]], which is targeted at low-power devices, including notebooks, tablets and small form-factor desktops and servers. It is perhaps most well-known for being the microarchitecture used for the [[Wikipedia:Playstation 4|Playstation 4]] and [[Wikipedia:Xbox One|Xbox One]], which each use custom 8-core Jaguar APUs.
    [*]   Simple framebuffer support
+
Socketed Jaguar APUs use the [[Wikipedia:AM1 Socket|AM1 socket]], and  [[Wikipedia:Socket_FT3|FT3 socket]] for mobile devices. G-series [[Wikipedia:System_on_a_chip|"system on a chip" (SoC)]] APUs are available for non-socketed devices such as tablets and embedded system boards.
}}
+
  
This is the preferred method of using the EFI framebuffer, the efifb and uvesafb drivers will be used as a fallback if the above is not compatible.
+
Desktop Jaguar APUs include the [[Wikipedia:List_of_AMD_accelerated_processing_unit_microprocessors#.22Kabini.22.2C_.22Temash.22_.282013.2C_28_nm.29|Kabini A-series APUs and Temash E-series APUs]], such as the Athlon 5150 and 5350 APUs, and Sempron 2650 and 3850.
=== Grub method ===
+
  
==== Unmask Grub 2.02_beta2 ====
+
Amd64-jaguar subarches use the MOVBE instruction which is not available on amd64-bulldozer, amd64-piledriver or amd64-steamroller. They are thus not instruction-compatible with any of these subarches.
  
Unmask the latest version of GRUB by placing this in your <code>/etc/portage/package.unmask</code>:
+
== 64-bit Intel Processors ==
 +
=== core2_64 ===
 +
<console>
 +
CFLAGS: -march=core2 -O2 -pipe
 +
CHOST: x86_64-pc-linux-gnu
 +
USE: mmx sse sse2 sse3 ssse3
 +
</console>
  
<pre>
+
The '''core2_64''' subarch supports 64-bit-capable [[Wikipedia:Intel_Core_2|Intel Core 2 Processors]], which includes ''some'' processors of the [[Wikipedia:Intel Core (microarchitecture)|Core]] and all processors of the [[Wikipedia:Penryn_(microarchitecture)|Penryn]] microarchitecture. All "Core 2" branded processors are 64-bit-capable. These processors were introduced in July of 2006 and were phased out in July of 2011, in favor of  [[Wikipedia:Nehalem_(microarchitecture)|Nehalem-based]] processors.
sys-boot/grub
+
</pre>
+
  
The 2.00 version of GRUB has known issues with UEFI booting. Using 2.02 is essential for having this boot method work reliably.
+
For a full list of 64-bit capable Core 2 processors, [http://ark.intel.com/search/advanced?s=t&FamilyText=Legacy%20Intel%C2%AE%20Core%E2%84%A22%20Processor&InstructionSet=64-bit see this link].
  
==== Emerging GRUB ====
+
The 64-bit capable ''Core 2''-branded CPUs include: "Conroe"/"Allendale" (dual-core for desktops), "Merom" (dual-core for laptops), "Merom-L" (single-core for laptops), "Kentsfield" (quad-core for desktops), and the updated variants named "Wolfdale" (dual-core for desktops), "Penryn" (dual-core for laptops),  and "Yorkfield" (quad-core for desktops). (Note: ''For the server and workstation "Woodcrest", "Tigerton", "Harpertown" and "Dunnington" CPUs see the [[Wikipedia:Xeon|Xeon]] brand''.)
  
You will still use GRUB as a boot loader, but before emerging grub, you will need to enable EFI booting. To do this,
+
=== corei7 ===
add the following line to <tt>/etc/portage/make.conf</tt>:
+
<console>
 +
CFLAGS: -march=corei7 -O2 -pipe
 +
CHOST: x86_64-pc-linux-gnu
 +
USE: mmx sse sse2 sse3 ssse3 sse4
 +
</console>
  
<pre>
+
Beginning in November 2008, Intel launched the first Core i7 processor, codenamed [[Wikipedia:Bloomfield_(microprocessor)|Bloomfield]], based on the [[Wikipedia:Nehalem_(microarchitecture)|Nehalem]] microarchitecture. With this launch, they also added to and modified the conventions of the [[Wikipedia:Intel_Core|Intel Core]] branding scheme. '''(Not to be confused with the [[Wikipedia:Intel Core (microarchitecture)|Intel Core microarchitecture]], which has only been supported by the processors sold under the Core2 brand. See [[Subarches#core2_64|core2_64]].)'''. This new naming scheme distinguishes between grades of processors rather than microarchitectures or design. Therefore, the '''corei7''' subarch supports the [[Wikipedia:Nehalem_(microarchitecture)|Nehalem]], [[Wikipedia:Westmere_(microarchitecture)|Westmere]], [[Wikipedia:Sandy_Bridge_(microarchitecture)|Sandy Bridge]],  [[Wikipedia:Ivy_Bridge_(microarchitecture)|Ivy Bridge]], and [[Wikipedia:Haswell_(microarchitecture)|Haswell]] microarchitectures under the follow brand names:
GRUB_PLATFORMS="efi-64"
+
</pre>
+
  
Then, <tt>emerge grub</tt>. You will notice <tt>efibootmgr</tt> getting pulled in as a dependency. This is expected and good.
+
* Intel Core i3 (entry-level consumer)
 
+
* Intel Core i5 (mainstream consumer)
==== Installing GRUB ====
+
* Intel Corei7 (high-end consumer/business)
 
+
* Intel Xeon (business server/workstation)
Now, for the magic of getting everything in place for booting. You should copy your kernel and initramfs (if you have one -- you will if you are following the default install) to <tt>/boot</tt>. GRUB will boot those. But how do we get UEFI to boot GRUB? Well, we need to run the following command:
+
  
 +
=== atom_64 ===
 
<console>
 
<console>
# ##i##grub-install --target=x86_64-efi --efi-directory=/boot --bootloader-id="Funtoo Linux [GRUB]" --recheck /dev/sda
+
CFLAGS: -O2 -fomit-frame-pointer -march=atom -pipe -mno-movbe
 +
CHOST: x86_64-pc-linux-gnu
 +
USE: mmx sse sse2 sse3
 
</console>
 
</console>
This command will simply install all the stuff to <tt>/boot/EFI</tt> and <tt>/boot/grub</tt> that your system needs to boot. In particular, the <tt>/boot/EFI/grub/grubx64.efi</tt> file will be created. This is the GRUB boot image that UEFI will load and start.
 
 
A more detailed explanation of the flags used in the above command:
 
* <code>--target=x86_64-efi</code>: Tells GRUB that we want to install it in a way that allows it to boot in UEFI
 
* <code>--efi-directory=/boot</code>: All GRUB UEFI files will be installed in ''/boot''
 
* <code>--bootloader-id="Funtoo Linux [GRUB]"</code>: This flag is not necessary for GRUB to boot. However, it allows you to change the text of the boot option in the UEFI BIOS. The stuff in the quotes can be set to anything that you would like.
 
* <code>--recheck</code>: If a device map already exists on the disk or partition that GRUB is being installed on, it will be removed.
 
* <code>/dev/sda</code>:The device that we are installing GRUB on.
 
 
==== Configuring GRUB ====
 
 
OK, now UEFI has the GRUB image it needs to boot. But we still need to configure GRUB itself so it finds and boots your kernel and initramfs. This is done by performing the following steps. Since boot-update doesn't yet support UEFI, we will use boot-update, but then edit our <code>/boot/grub/grub.cfg</code> to support UEFI booting.
 
 
First, you will need to edit <code>/etc/boot.conf</code>. Format this as you would if you were booting without UEFI. If you are not sure how this should look, below is an example of what it could look like if you are booting from an unencrypted ext4 partition:
 
 
{{file|name=/etc/boot.conf|desc=|body=
 
boot {
 
        generate grub
 
        default "Funtoo Linux"
 
        timeout 3
 
}
 
 
"Funtoo Linux" {
 
        kernel vmlinuz[-v]
 
        params += rootfstype=ext4 root=/dev/sda2
 
}
 
}}
 
 
After you have edited your <code>/etc/boot.conf</code> file, run <code>boot-update</code>. If you check your <code>/boot/grub/grub.cfg</code> now, you should see something like this:
 
 
{{file|name=/boot/grub/grub.cfg|desc=|body=
 
set timeout=3
 
 
  insmod part_gpt
 
  insmod fat
 
  set root=(hostdisk//dev/sda,gpt1)
 
  search --no-floppy --fs-uuid --set 3CFD-6884
 
if loadfont /grub/unifont.pf2; then
 
  set gfxmode=text
 
  insmod gfxterm
 
  insmod vbe
 
  terminal_output gfxterm
 
fi
 
 
set menu_color_normal=cyan/blue
 
set menu_color_highlight=blue/cyan
 
 
menuentry "Funtoo Linux - vmlinuz-3.16.3" {
 
  insmod part_gpt
 
  insmod fat
 
  set root=(hostdisk//dev/sda,gpt1)
 
  search --no-floppy --fs-uuid --set 3CFD-6884
 
  linux /vmlinuz-3.16.3 video=uvesafb:1920x1080-32,mtrr:3,ywrap rootfstype=ext4 root=/dev/sda2
 
  set gfxpayload=text
 
}
 
set default=0
 
}}
 
 
To get your <code>/boot/grub/grub.cfg</code> to support booting with UEFI, make your <code>/boot/grub/grub.cfg</code> look like this:
 
{{file|name=/boot/grub/grub.cfg|desc=|body=
 
set timeout=3
 
 
  insmod part_gpt
 
  insmod fat
 
  insmod efi_gop
 
  insmod efi_uga
 
  set root=(hostdisk//dev/sda,gpt1)
 
  search --no-floppy --fs-uuid --set 3CFD-6884
 
if loadfont /grub/unifont.pf2; then
 
  set gfxmode=auto
 
  insmod gfxterm
 
  insmod vbe
 
  terminal_output gfxterm
 
fi
 
 
set menu_color_normal=cyan/blue
 
set menu_color_highlight=blue/cyan
 
 
menuentry "Funtoo Linux - vmlinuz-3.16.3" {
 
  insmod part_gpt
 
  insmod fat
 
  set root=(hostdisk//dev/sda,gpt1)
 
  search --no-floppy --fs-uuid --set 3CFD-6884
 
  linux /vmlinuz-3.16.3 video=uvesafb:1920x1080-32,mtrr:3,ywrap rootfstype=ext4 root=/dev/sda2
 
  set gfxpayload=keep
 
}
 
set default=0
 
}}
 
 
The lines that we have added and altered do the following:
 
* <code>insmod efi_gop</code> and <code>insmod efi_uga</code>: Both of these involve adding support for the UEFI framebuffer to GRUB.
 
* <code>set gfxmode=auto</code>: Instead of having the GRUB boot option screen being displayed at the smallest resolution possible, changing this to auto will make it fit the resolution of your display.
 
  
== Known Issues ==
+
The Intel Atom Processor is the common name for Intel's  [[Wikipedia:Bonnell_(microarchitecture)|Bonnell microarchitecture]], which represents a partial revival of the principles used in earlier Intel designs such as P5 and the i486, with the sole purpose of enhancing the performance per watt ratio. Successor to the [[Wikipedia:Stealey_(microprocessor)|Intel A100 series (Stealey)]], which was derived from the [[Wikipedia:Pentium_M|Pentium M]], the Intel Atom has been produced since 2008. Targeted at low-power devices, Atom processors can be found in a wide range of notebooks, tablets and small form-factor desktops and servers.  
*With pure UEFI boot mode, with legacy mode disabled, following error expected:  
+
** video driver not supported, boot hangs, hard reboot required.
+
*Choose UEFI first, next legacy driver. It depends on motherboard vendor and efi bios version.
+
**In UEFI bios choose grub option, if your succeeded with above guide, additional menu should appear in Boot Menu, otherwise it boots into EFI shell: <code>grub:NAME of you hard drive</code>
+
* On some systems, installing the packages that are required for UEFI booting with any gcc later than a 4.x.x release may lead to a black screen after the GRUB screen. To fix this, before you begin installing any packages on your system, emerge =gcc-4.6.4-r2 and proceed with the installation as usual. Remember to switch your compiler back to the version of gcc that came with your system after you have finished installing. To do this, use <code>gcc-config 2</code>.  
+
  
=== Done! ===
+
The '''atom_64''' sub-architecture supports 64-bit capable Intel Atom CPUs.  The first 64-bit capable Intel Atom CPUs were the Intel Atom 230 and 330, released in late 2008. However, Intel also continued to produce new 32-bit Atom Processors after this date. For example, the Atom N2xx series Atom Diamondville models cannot support 64-bit operation, while the 2xx and 3xx Diamondville, Pineview, Cedarview and Centerton can. A full list of 64-bit capable Intel Atom Processors [http://ark.intel.com/search/advanced?s=t&FamilyText=Intel%C2%AE%20Atom%E2%84%A2%20Processor&InstructionSet=64-bit can be seen here.]
  
Remember to follow all other steps in the regular Funtoo Install Guide. Assuming you did everything correctly, your system should now boot via UEFI! We will be adding UEFI support to boot-update soon to make this process easier.
+
{{Important|For 64-bit support to be functional, a 64-bit capable Atom Processor must be paired ''with a processor, chipset, and BIOS'' that all support [[Wikipedia:X86-64#Intel_64|Intel 64]]. If not all hardware supports 64-bit, then you must use the '''atom_32''' subarch instead.}}
  
[[Category:HOWTO]]
+
{{:Install/Footer}}

Revision as of 19:33, November 19, 2014

Funtoo Linux Sub-Architectures

This page provides an overview of Funtoo Linux sub-architectures (also called subarches,) designed for quick and easy reference. While this information is available in other places, such as Wikipedia, it often takes some time to study and cross-reference the various articles to get a good understanding of each type of sub-architecture, and this information generally isn't all collected neatly in one place. That is the purpose of this page. When possible, links to more detailed Wikipedia pages are provided. You are encouraged to help maintain this page as well as the Wikipedia articles referenced here.

64-bit Suport (Generic)

generic_64

CFLAGS: -mtune=generic -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2

The generic_64 subarch is designed to support 64-bit PC-compatible CPUs, such as the AMD K8-series processors, which were introduced in late 2003. They were notable as the first processors that supported the AMD64 (also called X86-64) 64-bit instruction set for PC-compatible systems, which was introduced as a backwards-compatible 64-bit alternative to Intel's IA-64 architecture. Intel followed suit and also began supporting this 64-bit instruction set, which they called "Intel 64", by releasing X86-64 64-bit compatible CPUs from mid-2004 onwards (See Intel 64 implementations.)

AMD desktop 64-bit CPUs include the Athlon 64, Athlon 64 FX, Athlon 64 X2, Athlon X2, Turion 64, Turion 64 X2 and Sempron series processors. AMD server processors were released under the Opteron brand and have codenames SledgeHammer, Venus, Troy, Athens, Denmark, Italy, Egypt, Santa Ana and Santa Rosa. All Opterons released through late 2006 were based on the K8 microarchitecture with original X86-64 instructions.

64-bit AMD Processors

amd64-k10

CFLAGS: -march=amdfam10 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 3dnow 3dnowext

The amd64-k10 subarch provides support for the AMD Family 10h processors, which were released in late 2007 as a successor to the AMD K8 series processors.

Desktop amd64-k10 CPUs include AMD Phenom, AMD Phenom II and AMD Athlon II. Server CPUs include Opterons with codenames Budapest, Barcelona, Suzuka, Shanghai, Istanbul, Lisbon, and Magny-Cours. A full listing of amd64-k10 Opteron models can be found here.

amd64-bulldozer

CFLAGS: -march=bdver1 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext

The amd64-bulldozer subarch supports the AMD bulldozer microarchitecture CPUs, which were released from late 2011 through the first quarter of 2012 as a replacement for the K10 microarchitecture CPUs. Bulldozer desktop CPUs use the AM3+ socket and server CPUs use the G34 socket.

Desktop bulldozer CPUs include the Zambezi FX-series CPUs. Server bulldozer CPUs include Opterons with codenames Zurich (Opteron 3200-series), Valencia (Opteron 4200-series) and Interlagos (Opteron 6200 series). A complete list of Opteron models can be found here..

amd64-piledriver

CFLAGS: -march=bdver2 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext

The amd64-piledriver subarch supports the AMD Piledriver microarchitecture produced by AMD from mid-2012 through 2015, which is the successor to the AMD bulldozer microarchitecture. Piledriver CPUs and APUs are available that use the FM2 socket. Desktop Piledriver CPUs use the AM3+ socket. Server Piledriver CPUs use a variety of sockets, including AM3+, C32 and G34.

Desktop piledriver CPU and APUs include FX-series with codename Vishera (FX-8350, FX-8370), A-series with codename Trinity (A6-5400K, A10-5800K) and A-series with codename Richland.

Server piledriver CPUs include Opterons with codenames Delhi (Opteron 3300-series, AM3+), Seoul (Opteron 4300-series, C32) and Abu Dhabi (Opteron 6300-series, G34). A full listing of Opteron models is available here.

Piledriver adds several new instructions over bulldozer, so AMD bulldozer systems cannot run amd64-piledriver-optimized stages. However, this subarch is instruction-compatible with its successor, the, so amd64-piledriver stages can run on amd64-steamroller systems, and vice versa.

amd64-steamroller

CFLAGS: -march=bdver3 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext

The amd64-steamroller subarch supports the AMD steamroller microarchitecture, produced from early 2014. It is the successor to the AMD Piledriver microarchitecture. Steamroller APUs are available that use the FM2+ socket and FP3 socket (mobile.)

Desktop steamroller APUs include the A-Series with codename Kaveri, such as the quad-core AMD A10-7850K APU. Steamroller APUs are also available in mobile versions. Server steamroller APUs will include the Berlin APUs, which are expected to be released some time in 2015.

Amd64-steamroller subarches are instruction-compatible with amd64-piledriver, but add new instructions over amd64-bulldozer.

amd64-jaguar

CFLAGS: -march=btver2 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext

The amd64-jaguar (also called AMD Family 16h) subarch supports the AMD jaguar microarchitecture, which is targeted at low-power devices, including notebooks, tablets and small form-factor desktops and servers. It is perhaps most well-known for being the microarchitecture used for the Playstation 4 and Xbox One, which each use custom 8-core Jaguar APUs. Socketed Jaguar APUs use the AM1 socket, and FT3 socket for mobile devices. G-series "system on a chip" (SoC) APUs are available for non-socketed devices such as tablets and embedded system boards.

Desktop Jaguar APUs include the Kabini A-series APUs and Temash E-series APUs, such as the Athlon 5150 and 5350 APUs, and Sempron 2650 and 3850.

Amd64-jaguar subarches use the MOVBE instruction which is not available on amd64-bulldozer, amd64-piledriver or amd64-steamroller. They are thus not instruction-compatible with any of these subarches.

64-bit Intel Processors

core2_64

CFLAGS: -march=core2 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 ssse3

The core2_64 subarch supports 64-bit-capable Intel Core 2 Processors, which includes some processors of the Core and all processors of the Penryn microarchitecture. All "Core 2" branded processors are 64-bit-capable. These processors were introduced in July of 2006 and were phased out in July of 2011, in favor of Nehalem-based processors.

For a full list of 64-bit capable Core 2 processors, see this link.

The 64-bit capable Core 2-branded CPUs include: "Conroe"/"Allendale" (dual-core for desktops), "Merom" (dual-core for laptops), "Merom-L" (single-core for laptops), "Kentsfield" (quad-core for desktops), and the updated variants named "Wolfdale" (dual-core for desktops), "Penryn" (dual-core for laptops), and "Yorkfield" (quad-core for desktops). (Note: For the server and workstation "Woodcrest", "Tigerton", "Harpertown" and "Dunnington" CPUs see the Xeon brand.)

corei7

CFLAGS: -march=corei7 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 ssse3 sse4

Beginning in November 2008, Intel launched the first Core i7 processor, codenamed Bloomfield, based on the Nehalem microarchitecture. With this launch, they also added to and modified the conventions of the Intel Core branding scheme. (Not to be confused with the Intel Core microarchitecture, which has only been supported by the processors sold under the Core2 brand. See core2_64.). This new naming scheme distinguishes between grades of processors rather than microarchitectures or design. Therefore, the corei7 subarch supports the Nehalem, Westmere, Sandy Bridge, Ivy Bridge, and Haswell microarchitectures under the follow brand names:

  • Intel Core i3 (entry-level consumer)
  • Intel Core i5 (mainstream consumer)
  • Intel Corei7 (high-end consumer/business)
  • Intel Xeon (business server/workstation)

atom_64

CFLAGS: -O2 -fomit-frame-pointer -march=atom -pipe -mno-movbe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3

The Intel Atom Processor is the common name for Intel's Bonnell microarchitecture, which represents a partial revival of the principles used in earlier Intel designs such as P5 and the i486, with the sole purpose of enhancing the performance per watt ratio. Successor to the Intel A100 series (Stealey), which was derived from the Pentium M, the Intel Atom has been produced since 2008. Targeted at low-power devices, Atom processors can be found in a wide range of notebooks, tablets and small form-factor desktops and servers.

The atom_64 sub-architecture supports 64-bit capable Intel Atom CPUs. The first 64-bit capable Intel Atom CPUs were the Intel Atom 230 and 330, released in late 2008. However, Intel also continued to produce new 32-bit Atom Processors after this date. For example, the Atom N2xx series Atom Diamondville models cannot support 64-bit operation, while the 2xx and 3xx Diamondville, Pineview, Cedarview and Centerton can. A full list of 64-bit capable Intel Atom Processors can be seen here.

Important

For 64-bit support to be functional, a 64-bit capable Atom Processor must be paired with a processor, chipset, and BIOS that all support Intel 64. If not all hardware supports 64-bit, then you must use the atom_32 subarch instead.