Difference between pages "Install/ru/Partitioning" and "Funtoo:Keychain"

From Funtoo
< Install‎ | ru(Difference between pages)
Jump to navigation Jump to search
 
 
Line 1: Line 1:
<noinclude>
{{Article
{{InstallPart|процесс разбиения диска и создания файловых систем}}
|Subtitle=Official Project Page
</noinclude>
|Summary=Keychain helps you to manage SSH and GPG keys in a convenient and secure manner. Download and learn how to use Keychain on your Linux, Unix or MacOS system.
=== Подготовка жесткого диска ===
|Keywords=keychain,ssh,rsa,dsa,gpg,linux,gentoo,macos,download,source code
|Author=Drobbins
}}
<tt>Keychain</tt> helps you to manage SSH and GPG keys in a convenient and secure manner. It acts as a frontend to <tt>ssh-agent</tt> and <tt>ssh-add</tt>, but allows you to easily have one long running <tt>ssh-agent</tt> process per system, rather than the norm of one <tt>ssh-agent</tt> per login session.


В этой части  мы научимся различным способам установки Funtoo Linux -- и загрузки с -- жесткого диска.
This dramatically reduces the number of times you need to enter your passphrase. With <tt>keychain</tt>, you only need to enter a passphrase once every time your local machine is rebooted. <tt>Keychain</tt> also makes it easy for remote cron jobs to securely "hook in" to a long-running <tt>ssh-agent</tt> process, allowing your scripts to take advantage of key-based logins.


==== Введение ====
Those who are new to OpenSSH and the use of public/private keys for authentication may want to check out the following articles by Daniel Robbins, which will provide a gentle introduction to the concepts used by Keychain:
* [[OpenSSH Key Management, Part_1]]
* [[OpenSSH Key Management, Part_2]]
* [[OpenSSH Key Management, Part_3]]


В прежние времена существовал лишь один способ загрузить PC-совместимый компьютер. Все наши дектопы и сервера имели стандартный PC BIOS, все наши харды использовали MBR и были разбиты используя схему разбивки MBR.  Вот как это все было и нам это нравилось!
== Download and Resources ==


Затем появились EFI и UEFI,  встроенные программы нового образца наряду со схемой разбивки GPT, поддерживающая диски размером более 2.2TБ. Неожиданно, нам стали доступны различные способы установки и загрузки Линукс систем . То, что было единым методом, стало чем-то более сложным.
The latest release of keychain is version <tt>2.7.2_beta1</tt>, and was released on July 7, 2014. The current version of keychain supports <tt>gpg-agent</tt> as well as <tt>ssh-agent</tt>.


Воспользуемся моментом и рассмотрим доступные способы конфигурации жесткого диска для загрузки Funtoo Linux. Данное Руководство рекомендует способ "по-старинке" , загрузка BIOS и использование MBR.  Данный способ работает (за исключением редких случаев) и всесторонне поддерживается. И в этом нет ничего плохого. Если Ваш жесткий диск 2TБ или меньшего размера это не является препятствием для использования всего дискового пространства.
Keychain is compatible with many operating systems, including <tt>AIX</tt>, <tt>*BSD</tt>, <tt>Cygwin</tt>, <tt>MacOS X</tt>, <tt>Linux</tt>, <tt>HP/UX</tt>, <tt>Tru64 UNIX</tt>, <tt>IRIX</tt>, <tt>Solaris</tt> and <tt>GNU Hurd</tt>.


But, there are some situations where the old-school method isn't optimal. If you have a system disk >2TB in size, then MBR partitions won't allow you to access all your storage. So that's one reason. Another reason is that there are some so-called "PC" systems out there that don't support BIOS booting anymore, and force you to use UEFI to boot. So, out of compassion for people who fall into this predicament, this Install Guide documents UEFI booting too.
=== Download ===


Our recommendation is still to go old-school unless you have reason not to. The boot loader we will be using to load the Linux kernel in this guide is called GRUB, so we call this method the '''BIOS + GRUB (MBR)''' method. It's the traditional method of setting up a PC-compatible system to boot Linux.
* ''Release Archive''
** [http://www.funtoo.org/distfiles/keychain/keychain-2.7.2_beta1.tar.bz2 keychain 2.7.2_beta1]
** [http://www.funtoo.org/distfiles/keychain/keychain-2.7.1.tar.bz2 keychain 2.7.1]


If you need to use UEFI to boot, we recommend not using the MBR at all for booting, as some systems support this, but others don't. Instead, we recommend using UEFI to boot GRUB, which in turn will load Linux. We refer to this method as the '''UEFI + GRUB (GPT)''' method.
* ''Apple MacOS X Packages''
** [http://www.funtoo.org/distfiles/keychain/keychain-2.7.1-macosx.tar.gz keychain 2.7.1 MacOS X package]


And yes, there are even more methods, some of which are documented on the [[Boot Methods]] page. We used to recommend a '''BIOS + GRUB (GPT)''' method but it is not consistently supported across a wide variety of hardware.
Keychain development sources can be found in the [http://www.github.com/funtoo/keychain keychain git repository]. Please use the [https://bugs.funtoo.org Funtoo Linux bug tracker] and [irc://irc.freenode.net/funtoo #funtoo irc channel] for keychain support questions as well as bug reports.


'''The big question is -- which boot method should you use?''' Here's how to tell.
=== Project History ===


;Principle 1 - Old School: If you can reliably boot System Rescue CD and it shows you an initial light blue menu, you are booting the CD using the BIOS, and it's likely that you can thus boot Funtoo Linux using the BIOS. So, go old-school and use BIOS booting, ''unless'' you have some reason to use UEFI, such as having a >2.2TB system disk. In that case, see Principle 2, as your system may also support UEFI booting.
Daniel Robbins originally wrote <tt>keychain</tt> 1.0 through 2.0.3. 1.0 was written around June 2001, and 2.0.3 was released in late August, 2002.


;Principle 2 - New School: If you can reliably boot System Rescue CD and it shows you an initial black and white menu -- congratulations, your system is configured to support UEFI booting. This means that you are ready to install Funtoo Linux to boot via UEFI. Your system may still support BIOS booting, but just be trying UEFI first. You can poke around in your BIOS boot configuration and play with this.
After 2.0.3, <tt>keychain</tt> was maintained by various Gentoo developers, including Seth Chandler, Mike Frysinger and Robin H. Johnson, through July 3, 2003.


;What's the Big Difference between Old School and New School?: Here's the deal. If you go with old-school MBR partitions, your <code>/boot</code> partition will be an ext2 filesystem, and you'll use <code>fdisk</code> to create your MBR partitions. If you go with new-school GPT partitions and UEFI booting, your <code>/boot</code> partition will be a vfat filesystem, because this is what UEFI is able to read, and you will use <code>gdisk</code> to create your GPT partitions. And you'll install GRUB a bit differently. That's about all it comes down to, in case you were curious.
On April 21, 2004, Aron Griffis committed a major rewrite of <tt>keychain</tt> which was released as 2.2.0. Aron continued to actively maintain and improve <tt>keychain</tt> through October 2006 and the <tt>keychain</tt> 2.6.8 release. He also made a few commits after that date, up through mid-July, 2007. At this point, <tt>keychain</tt> had reached a point of maturity.


;Also Note: To install Funtoo Linux to boot via the New School UEFI method, you must boot System Rescue CD using UEFI -- and see an initial black and white screen. Otherwise, UEFI will not be active and you will not be able to set it up!
In mid-July, 2009, Daniel Robbins migrated Aron's mercurial repository to git and set up a new project page on funtoo.org, and made a few bug fix commits to the git repo that had been collecting in [http://bugs.gentoo.org bugs.gentoo.org]. Daniel continues to maintain <tt>keychain</tt> and supporting documentation on funtoo.org, and plans to make regular maintenance releases of <tt>keychain</tt> as needed.


{{Note|'''Some motherboards may appear to support UEFI, but don't.''' Do your research. For example, the Award BIOS in my Gigabyte GA-990FXA-UD7 rev 1.1 has an option to enable UEFI boot for CD/DVD. '''This is not sufficient for enabling UEFI boot for hard drives and installing Funtoo Linux.''' UEFI must be supported for both removable media (so you can boot System Rescue CD using UEFI) as well as fixed media (so you can boot your new Funtoo Linux installation.) It turns out that later revisions of this board (rev 3.0) have a new BIOS that fully supports UEFI boot.  This may point to a third principle -- know thy hardware.}}
== Quick Setup ==


==== Old-School (BIOS/MBR) Method ====
=== Linux ===
 
{{Note|Use this method if you are booting using your BIOS, and if your System Rescue CD initial boot menu was light blue. If you're going to use the new-school method, [[#New-School (UEFI/GPT) Method|click here to jump down to UEFI/GPT.]]}}
 
===== Preparation =====
 
First, it's a good idea to make sure that you've found the correct hard disk to partition. Try this command and verify that <code>/dev/sda</code> is the disk that you want to partition:


To install under Gentoo or Funtoo Linux, type
<console>
<console>
# ##i##fdisk -l /dev/sda
###i## emerge keychain
 
Disk /dev/sda: 640.1 GB, 640135028736 bytes, 1250263728 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt
 
 
#        Start          End    Size  Type            Name
1        2048  1250263694  596.2G  Linux filesyste Linux filesystem
</console>
</console>


Now, it's recommended that you erase any existing MBR or GPT partition tables on the disk, which could confuse the system's BIOS at boot time. We do this using <code>sgdisk</code>:
For other Linux distributions, use your distribution's package manager, or download and install using the source tarball above. Then generate RSA/DSA keys if necessary. The quick install docs assume you have a DSA key pair named <tt>id_dsa</tt> and <tt>id_dsa.pub</tt> in your <tt>~/.ssh/</tt> directory. Add the following to your <tt>~/.bash_profile</tt>:
{{fancywarning|This will make any existing partitions inaccessible! You are '''strongly''' cautioned and advised to backup any critical data before proceeding.}}


<console>
{{file|name=~/.bash_profile|body=
# ##i##sgdisk --zap-all /dev/sda
eval `keychain --eval --agents ssh id_rsa`
}}


Creating new GPT entries.
If you want to take advantage of GPG functionality, ensure that GNU Privacy Guard is installed and omit the <tt>--agents ssh</tt> option above.
GPT data structures destroyed! You may now partition the disk using fdisk or
other utilities.
</console>


This output is also nothing to worry about, as the command still succeded:
=== Apple MacOS X ===


<console>
To install under MacOS X, install the MacOS X package for keychain. Assuming you have an <tt>id_dsa</tt> and <tt>id_dsa.pub</tt> key pair in your <tt>~/.ssh/</tt> directory, add the following to your <tt>~/.bash_profile</tt>:
***************************************************************
Found invalid GPT and valid MBR; converting MBR to GPT format
in memory.  
***************************************************************
</console>


===== Partitioning =====
{{file|name=~/.bash_profile|body=
eval `keychain --eval --agents ssh --inherit any id_dsa`
}}


Now we will use <code>fdisk</code> to create the MBR partition table and partitions:
{{Fancynote|The <tt>--inherit any</tt> option above causes keychain to inherit any ssh key passphrases stored in your Apple MacOS Keychain. If you would prefer for this to not happen, then this option can be omitted.}}


<console>
== Background ==
# ##i##fdisk /dev/sda
</console>


Within <code>fdisk</code>, follow these steps:
You're probably familiar with <tt>ssh</tt>, which has become a secure replacement for the venerable <tt>telnet</tt> and <tt>rsh</tt> commands.


'''Empty the partition table''':
Typically, when one uses <tt>ssh</tt> to connect to a remote system, one supplies a secret passphrase to <tt>ssh</tt>, which is then passed in encrypted form over the network to the remote server. This passphrase is used by the remote <tt>sshd</tt> server to determine if you should be granted access to the system.


<console>
However, OpenSSH and nearly all other SSH clients and servers have the ability to perform another type of authentication, called asymmetric public key authentication, using the RSA or DSA authentication algorithms. They are very useful, but can also be complicated to use. <tt>keychain</tt> has been designed to make it easy to take advantage of the benefits of RSA and DSA authentication.
Command (m for help): ##i##o ↵
</console>


'''Create Partition 1''' (boot):
== Generating a Key Pair ==


<console>
To use RSA and DSA authentication, first you use a program called <tt>ssh-keygen</tt> (included with OpenSSH) to generate a ''key pair'' -- two small files. One of the files is the ''public key''. The other small file contains the ''private key''. <tt>ssh-keygen</tt> will ask you for a passphrase, and this passphrase will be used to encrypt your private key. You will need to supply this passphrase to use your private key. If you wanted to generate a DSA key pair, you would do this:
Command (m for help): ##i##n ↵
Partition type (default p): ##i##↵
Partition number (1-4, default 1): ##i##↵
First sector: ##i##↵
Last sector: ##i##+128M ↵
</console>


'''Create Partition 2''' (swap):
<console># ##i##ssh-keygen -t dsa
Generating public/private dsa key pair.</console>
You would then be prompted for a location to store your key pair. If you do not have one currently stored in <tt>~/.ssh</tt>, it is fine to accept the default location:


<console>
<console>Enter file in which to save the key (/root/.ssh/id_dsa): </console>
Command (m for help): ##i##n ↵
Then, you are prompted for a passphrase. This passphrase is used to encrypt the ''private key'' on disk, so even if it is stolen, it will be difficult for someone else to use it to successfully authenticate as you with any accounts that have been configured to recognize your public key.
Partition type (default p): ##i##↵
Partition number (2-4, default 2): ##i##↵
First sector: ##i##↵
Last sector: ##i##+2G ↵
Command (m for help): ##i##t ↵
Partition number (1,2, default 2): ##i## ↵
Hex code (type L to list all codes): ##i##82 ↵
</console>


'''Create the root partition:'''
Note that conversely, if you '''do not''' provide a passphrase for your private key file, then your private key file '''will not''' be encrypted. This means that if someone steals your private key file, ''they will have the full ability to authenticate with any remote accounts that are set up with your public key.''


<console>
Below, I have supplied a passphrase so that my private key file will be encrypted on disk:
Command (m for help): ##i##n ↵
Partition type (default p): ##i##↵
Partition number (3,4, default 3): ##i##↵
First sector: ##i##↵
Last sector: ##i##↵
</console>


'''Verify the partition table:'''
<console>Enter passphrase (empty for no passphrase): ##i#########
Enter same passphrase again: ##i#########
Your identification has been saved in /var/tmp/id_dsa.
Your public key has been saved in /var/tmp/id_dsa.pub.
The key fingerprint is:
5c:13:ff:46:7d:b3:bf:0e:37:1e:5e:8c:7b:a3:88:f4 root@devbox-ve
The key's randomart image is:
+--[ DSA 1024]----+
|          .      |
|          o  . |
|          o . ..o|
|      . . . o  +|
|        S    o. |
|            . o.|
|        .  ..++|
|        . o . =o*|
|        . E .+*.|
+-----------------+</console>


<console>
== Setting up Authentication ==
Command (m for help): ##i##p


Disk /dev/sda: 298.1 GiB, 320072933376 bytes, 625142448 sectors
Here's how you use these files to authenticate with a remote server. On the remote server, you would append the contents of your ''public key'' to the <tt>~.ssh/authorized_keys</tt> file, if such a file exists. If it doesn't exist, you can simply create a new <tt>authorized_keys</tt> file in the remote account's <tt>~/.ssh</tt> directory that contains the contents of your local <tt>id_dsa.pub</tt> file.
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x82abc9a6


Device    Boot    Start      End    Blocks  Id System
Then, if you weren't going to use <tt>keychain</tt>, you'd perform the following steps. On your local client, you would start a program called <tt>ssh-agent</tt>, which runs in the background. Then you would use a program called <tt>ssh-add</tt> to tell <tt>ssh-agent</tt> about your secret private key. Then, if you've set up your environment properly, the next time you run <tt>ssh</tt>, it will find <tt>ssh-agent</tt> running, grab the private key that you added to <tt>ssh-agent</tt> using <tt>ssh-add</tt>, and use this key to authenticate with the remote server.
/dev/sda1          2048    264191    131072  83 Linux
/dev/sda2        264192  4458495  2097152  82 Linux swap / Solaris
/dev/sda3        4458496 625142447 310341976  83 Linux
</console>


'''Write the parition table to disk:'''
Again, the steps in the previous paragraph is what you'd do if <tt>keychain</tt> wasn't around to help. If you are using <tt>keychain</tt>, and I hope you are, you would simply add the following line to your <tt>~/.bash_profile</tt> or if a regular user to<tt>~/.bashrc</tt> :


<console>
{{file|name=~/.bash_profile|body=
Command (m for help): ##i##w
eval `keychain --eval id_dsa`
</console>
}}


Your new MBR partition table will now be written to your system disk.
The next time you log in or source your <tt>~/.bash_profile</tt> or if you use <tt>~/.bashrc</tt>, <tt>keychain</tt> will start, start <tt>ssh-agent</tt> for you if it has not yet been started, use <tt>ssh-add</tt> to add your <tt>id_dsa</tt> private key file to <tt>ssh-agent</tt>, and set up your shell environment so that <tt>ssh</tt> will be able to find <tt>ssh-agent</tt>. If <tt>ssh-agent</tt> is already running, <tt>keychain</tt> will ensure that your <tt>id_dsa</tt> private key has been added to <tt>ssh-agent</tt> and then set up your environment so that <tt>ssh</tt> can find the already-running <tt>ssh-agent</tt>. It will look something like this:


{{Note|You're done with partitioning! Now, jump over to [[#Creating filesystems|Creating filesystems]].}}
Note that when <tt>keychain</tt> runs for the first time after your local system has booted, you will be prompted for a passphrase for your private key file if it is encrypted. But here's the nice thing about using <tt>keychain</tt> -- even if you are using an encrypted private key file, you will only need to enter your passphrase when your system first boots (or in the case of a server, when you first log in.) After that, <tt>ssh-agent</tt> is already running and has your decrypted private key cached in memory. So if you open a new shell, you will see something like this:


==== New-School (UEFI/GPT) Method ====
This means that you can now <tt>ssh</tt> to your heart's content, without supplying a passphrase.


{{Note|Use this method if you are booting using UEFI, and if your System Rescue CD initial boot menu was black and white. If it was light blue, this method will not work.}}
You can also execute batch <tt>cron</tt> jobs and scripts that need to use <tt>ssh</tt> or <tt>scp</tt>, and they can take advantage of passwordless RSA/DSA authentication as well. To do this, you would add the following line to the top of a bash script:


The <tt>gdisk</tt> commands to create a GPT partition table are as follows. Adapt sizes as necessary, although these defaults will work for most users. Start <code>gdisk</code>:
{{file|name=example-script.sh|body=
eval `keychain --noask --eval id_dsa` || exit 1
}}


<console>
The extra <tt>--noask</tt> option tells <tt>keychain</tt> that it should not prompt for a passphrase if one is needed. Since it is not running interactively, it is better for the script to fail if the decrypted private key isn't cached in memory via <tt>ssh-agent</tt>.
# ##i##gdisk
</console>


Within <tt>gdisk</tt>, follow these steps:
== Keychain Options ==


'''Create a new empty partition table''' (This ''will'' erase all data on the disk when saved):
=== Specifying Agents ===


<console>
In the images above, you will note that <tt>keychain</tt> starts <tt>ssh-agent</tt>, but also starts <tt>gpg-agent</tt>. Modern versions of <tt>keychain</tt> also support caching decrypted GPG keys via use of <tt>gpg-agent</tt>, and will start <tt>gpg-agent</tt> by default if it is available on your system. To avoid this behavior and only start <tt>ssh-agent</tt>, modify your <tt>~/.bash_profile</tt> as follows:
Command: ##i##o ↵
This option deletes all partitions and creates a new protective MBR.
Proceed? (Y/N): ##i##y ↵
</console>


'''Create Partition 1''' (boot):
{{file|name=~/.bash_profile|body=
 
eval `keychain --agents ssh --eval id_dsa` || exit 1
<console>
}}
Command: ##i##n ↵
Partition Number: ##i##1 ↵
First sector: ##i##↵
Last sector: ##i##+500M ↵
Hex Code: ##i##↵
</console>
 
'''Create Partition 2''' (swap):
 
<console>
Command: ##i##n ↵
Partition Number: ##i##2 ↵
First sector: ##i##↵
Last sector: ##i##+4G ↵
Hex Code: ##i##8200 ↵
</console>
 
'''Create Partition 3''' (root):
 
<console>
Command: ##i##n ↵
Partition Number: ##i##3 ↵
First sector: ##i##↵
Last sector: ##i##↵##!i## (for rest of disk)
Hex Code: ##i##↵
</console>
 
Along the way, you can type "<tt>p</tt>" and hit Enter to view your current partition table. If you make a mistake, you can type "<tt>d</tt>" to delete an existing partition that you created. When you are satisfied with your partition setup, type "<tt>w</tt>" to write your configuration to disk:
 
'''Write Partition Table To Disk''':
 
<console>
Command: ##i##w ↵
Do you want to proceed? (Y/N): ##i##Y ↵
</console>
 
The partition table will now be written to disk and <tt>gdisk</tt> will close.


Now, your GPT/GUID partitions have been created, and will show up as the following ''block devices'' under Linux:
The additional <tt>--agents ssh</tt> option tells <tt>keychain</tt> just to manage <tt>ssh-agent</tt>, and ignore <tt>gpg-agent</tt> even if it is available.


* <tt>/dev/sda1</tt>, which will be used to hold the <tt>/boot</tt> filesystem,
=== Clearing Keys ===
* <tt>/dev/sda2</tt>, which will be used for swap space, and
* <tt>/dev/sda3</tt>, which will hold your root filesystem.


==== Creating filesystems ====
Sometimes, it might be necessary to flush all cached keys in memory. To do this, type:


{{Note|This section covers both BIOS ''and'' UEFI installs. Don't skip it!}}
<console># ##i##keychain --clear</console>
Any agent(s) will continue to run.


Before your newly-created partitions can be used, the block devices need to be initialized with filesystem ''metadata''. This process is known as ''creating a filesystem'' on the block devices. After filesystems are created on the block devices, they can be mounted and used to store files.
=== Improving Security ===


Let's keep this simple. Are you using old-school MBR partitions? If so, let's create an ext2 filesystem on /dev/sda1:
To improve the security of <tt>keychain</tt>, some people add the <tt>--clear</tt> option to their <tt>~/.bash_profile</tt> <tt>keychain</tt> invocation. The rationale behind this is that any user logging in should be assumed to be an intruder until proven otherwise. This means that you will need to re-enter any passphrases when you log in, but cron jobs will still be able to run when you log out.


<console>
=== Stopping Agents ===
# ##i##mkfs.ext2 /dev/sda1
</console>


If you're using new-school GPT partitions for UEFI, you'll want to create a vfat filesystem on /dev/sda1, because this is what UEFI is able to read:
If you want to stop all agents, which will also of course cause your keys/identities to be flushed from memory, you can do this as follows:


<console>
<console># ##i##keychain -k all</console>
# ##i##mkfs.vfat -F 32 /dev/sda1
If you have other agents running under your user account, you can also tell <tt>keychain</tt> to just stop only the agents that <tt>keychain</tt> started:
</console>


Now, let's create a swap partition. This partition will be used as disk-based virtual memory for your Funtoo Linux system.
<console># ##i##keychain -k mine</console>


You will not create a filesystem on your swap partition, since it is not used to store files. But it is necessary to initialize it using the <code>mkswap</code> command. Then we'll run the <code>swapon</code> command to make your newly-initialized swap space immediately active within the live CD environment, in case it is needed during the rest of the install process:
=== GPG ===


Keychain can ask you for your GPG passphrase if you provide it the GPG key ID. To find it out:
<console>
<console>
# ##i##mkswap /dev/sda2
$##i## gpg -k
# ##i##swapon /dev/sda2
pub  2048R/DEADBEEF 2012-08-16
uid                  Name (Comment) <email@host.tld>
sub  2048R/86D2FAC6 2012-08-16
</console>
</console>


Now, we need to create a root filesystem. This is where Funtoo Linux will live. We generally recommend ext4 or XFS root filesystems. If you're not sure, choose ext4. Here's how to create a root ext4 filesystem:
Note the '''DEADBEEF''' above is the ID. Then, in your login script, do your usual


<console>
<console>
# ##i##mkfs.ext4 /dev/sda3
$##i## keychain --dir ~/.ssh/.keychain ~/.ssh/id_rsa DEADBEEF
$##i## source ~/.ssh/.keychain/$HOST-sh
$##i## source ~/.ssh/.keychain/$HOST-sh-gpg
</console>
</console>


...and here's how to create an XFS root filesystem, if you choose to use XFS:
=== Learning More ===


<console>
The instructions above will work on any system that uses <tt>bash</tt> as its default shell, such as most Linux systems and Mac OS X.
# ##i##mkfs.xfs /dev/sda3
</console>


Your filesystems (and swap) have all now been initialized, so that that can be mounted (attached to your existing directory heirarchy) and used to store files. We are ready to begin installing Funtoo Linux on these brand-new filesystems.
To learn more about the many things that <tt>keychain</tt> can do, including alternate shell support, consult the keychain man page, or type <tt>keychain --help | less</tt> for a full list of command options.


{{fancywarning|1=
I also recommend you read my original series of articles about [http://www.openssh.com OpenSSH] that I wrote for IBM developerWorks, called <tt>OpenSSH Key Management</tt>. Please note that <tt>keychain</tt> 1.0 was released along with Part 2 of this article, which was written in 2001. <tt>keychain</tt> has changed quite a bit since then. In other words, read these articles for the conceptual and [http://www.openssh.com OpenSSH] information, but consult the <tt>keychain</tt> man page for command-line options and usage instructions :)
When deploying an OpenVZ host, please use ext4 exclusively. The Parallels development team tests extensively with ext4, and modern versions of <code>openvz-rhel6-stable</code> are '''not''' compatible with XFS, and you may experience kernel bugs.
}}


==== Mounting filesystems ====
* [http://www.ibm.com/developerworks/library/l-keyc.html Common Threads: OpenSSH key management, Part 1] - Understanding RSA/DSA Authentication
* [http://www.ibm.com/developerworks/library/l-keyc2/ Common Threads: OpenSSH key management, Part 2] - Introducing <tt>ssh-agent</tt> and <tt>keychain</tt>
* [http://www.ibm.com/developerworks/library/l-keyc3/ Common Threads: OpenSSH key management, Part 3] - Agent forwarding and <tt>keychain</tt> improvements


Mount the newly-created filesystems as follows, creating <code>/mnt/funtoo</code> as the installation mount point:
As mentioned at the top of the page, <tt>keychain</tt> development sources can be found in the [http://www.github.com/funtoo/keychain keychain git repository]. Please use the [http://groups.google.com/group/funtoo-dev funtoo-dev mailing list] and [irc://irc.freenode.net/funtoo #funtoo irc channel] for keychain support questions as well as bug reports.


<console>
[[Category:HOWTO]]
# ##i##mkdir /mnt/funtoo
[[Category:Projects]]
# ##i##mount /dev/sda3 /mnt/funtoo
[[Category:First Steps]]
# ##i##mkdir /mnt/funtoo/boot
[[Category:Articles]]
# ##i##mount /dev/sda1 /mnt/funtoo/boot
{{ArticleFooter}}
</console>
 
Optionally, if you have a separate filesystem for <code>/home</code> or anything else:
 
<console>
# ##i##mkdir /mnt/funtoo/home
# ##i##mount /dev/sda4 /mnt/funtoo/home
</console>
 
If you have <code>/tmp</code> or <code>/var/tmp</code> on a separate filesystem, be sure to change the permissions of the mount point to be globally-writeable after mounting, as follows:
 
<console>
# ##i##chmod 1777 /mnt/funtoo/tmp
</console>

Revision as of 16:22, January 5, 2015

Official Project Page

Keychain helps you to manage SSH and GPG keys in a convenient and secure manner. Download and learn how to use Keychain on your Linux, Unix or MacOS system.
   Support Funtoo!
Get an awesome Funtoo container and support Funtoo! See Funtoo Containers for more information.

Keychain helps you to manage SSH and GPG keys in a convenient and secure manner. It acts as a frontend to ssh-agent and ssh-add, but allows you to easily have one long running ssh-agent process per system, rather than the norm of one ssh-agent per login session.

This dramatically reduces the number of times you need to enter your passphrase. With keychain, you only need to enter a passphrase once every time your local machine is rebooted. Keychain also makes it easy for remote cron jobs to securely "hook in" to a long-running ssh-agent process, allowing your scripts to take advantage of key-based logins.

Those who are new to OpenSSH and the use of public/private keys for authentication may want to check out the following articles by Daniel Robbins, which will provide a gentle introduction to the concepts used by Keychain:

Download and Resources

The latest release of keychain is version 2.7.2_beta1, and was released on July 7, 2014. The current version of keychain supports gpg-agent as well as ssh-agent.

Keychain is compatible with many operating systems, including AIX, *BSD, Cygwin, MacOS X, Linux, HP/UX, Tru64 UNIX, IRIX, Solaris and GNU Hurd.

Download

Keychain development sources can be found in the keychain git repository. Please use the Funtoo Linux bug tracker and #funtoo irc channel for keychain support questions as well as bug reports.

Project History

Daniel Robbins originally wrote keychain 1.0 through 2.0.3. 1.0 was written around June 2001, and 2.0.3 was released in late August, 2002.

After 2.0.3, keychain was maintained by various Gentoo developers, including Seth Chandler, Mike Frysinger and Robin H. Johnson, through July 3, 2003.

On April 21, 2004, Aron Griffis committed a major rewrite of keychain which was released as 2.2.0. Aron continued to actively maintain and improve keychain through October 2006 and the keychain 2.6.8 release. He also made a few commits after that date, up through mid-July, 2007. At this point, keychain had reached a point of maturity.

In mid-July, 2009, Daniel Robbins migrated Aron's mercurial repository to git and set up a new project page on funtoo.org, and made a few bug fix commits to the git repo that had been collecting in bugs.gentoo.org. Daniel continues to maintain keychain and supporting documentation on funtoo.org, and plans to make regular maintenance releases of keychain as needed.

Quick Setup

Linux

To install under Gentoo or Funtoo Linux, type

root # emerge keychain

For other Linux distributions, use your distribution's package manager, or download and install using the source tarball above. Then generate RSA/DSA keys if necessary. The quick install docs assume you have a DSA key pair named id_dsa and id_dsa.pub in your ~/.ssh/ directory. Add the following to your ~/.bash_profile:

   ~/.bash_profile
eval `keychain --eval --agents ssh id_rsa`

If you want to take advantage of GPG functionality, ensure that GNU Privacy Guard is installed and omit the --agents ssh option above.

Apple MacOS X

To install under MacOS X, install the MacOS X package for keychain. Assuming you have an id_dsa and id_dsa.pub key pair in your ~/.ssh/ directory, add the following to your ~/.bash_profile:

   ~/.bash_profile
eval `keychain --eval --agents ssh --inherit any id_dsa`
   Note

The --inherit any option above causes keychain to inherit any ssh key passphrases stored in your Apple MacOS Keychain. If you would prefer for this to not happen, then this option can be omitted.

Background

You're probably familiar with ssh, which has become a secure replacement for the venerable telnet and rsh commands.

Typically, when one uses ssh to connect to a remote system, one supplies a secret passphrase to ssh, which is then passed in encrypted form over the network to the remote server. This passphrase is used by the remote sshd server to determine if you should be granted access to the system.

However, OpenSSH and nearly all other SSH clients and servers have the ability to perform another type of authentication, called asymmetric public key authentication, using the RSA or DSA authentication algorithms. They are very useful, but can also be complicated to use. keychain has been designed to make it easy to take advantage of the benefits of RSA and DSA authentication.

Generating a Key Pair

To use RSA and DSA authentication, first you use a program called ssh-keygen (included with OpenSSH) to generate a key pair -- two small files. One of the files is the public key. The other small file contains the private key. ssh-keygen will ask you for a passphrase, and this passphrase will be used to encrypt your private key. You will need to supply this passphrase to use your private key. If you wanted to generate a DSA key pair, you would do this:

root # ssh-keygen -t dsa
Generating public/private dsa key pair.

You would then be prompted for a location to store your key pair. If you do not have one currently stored in ~/.ssh, it is fine to accept the default location:

Enter file in which to save the key (/root/.ssh/id_dsa): 

Then, you are prompted for a passphrase. This passphrase is used to encrypt the private key on disk, so even if it is stolen, it will be difficult for someone else to use it to successfully authenticate as you with any accounts that have been configured to recognize your public key.

Note that conversely, if you do not provide a passphrase for your private key file, then your private key file will not be encrypted. This means that if someone steals your private key file, they will have the full ability to authenticate with any remote accounts that are set up with your public key.

Below, I have supplied a passphrase so that my private key file will be encrypted on disk:

Enter passphrase (empty for no passphrase): #######
Enter same passphrase again: #######
Your identification has been saved in /var/tmp/id_dsa.
Your public key has been saved in /var/tmp/id_dsa.pub.
The key fingerprint is:
5c:13:ff:46:7d:b3:bf:0e:37:1e:5e:8c:7b:a3:88:f4 root@devbox-ve
The key's randomart image is:
+--[ DSA 1024]----+
|          .      |
|           o   . |
|          o . ..o|
|       . . . o  +|
|        S     o. |
|             . o.|
|         .   ..++|
|        . o . =o*|
|         . E .+*.|
+-----------------+

Setting up Authentication

Here's how you use these files to authenticate with a remote server. On the remote server, you would append the contents of your public key to the ~.ssh/authorized_keys file, if such a file exists. If it doesn't exist, you can simply create a new authorized_keys file in the remote account's ~/.ssh directory that contains the contents of your local id_dsa.pub file.

Then, if you weren't going to use keychain, you'd perform the following steps. On your local client, you would start a program called ssh-agent, which runs in the background. Then you would use a program called ssh-add to tell ssh-agent about your secret private key. Then, if you've set up your environment properly, the next time you run ssh, it will find ssh-agent running, grab the private key that you added to ssh-agent using ssh-add, and use this key to authenticate with the remote server.

Again, the steps in the previous paragraph is what you'd do if keychain wasn't around to help. If you are using keychain, and I hope you are, you would simply add the following line to your ~/.bash_profile or if a regular user to~/.bashrc :

   ~/.bash_profile
eval `keychain --eval id_dsa`

The next time you log in or source your ~/.bash_profile or if you use ~/.bashrc, keychain will start, start ssh-agent for you if it has not yet been started, use ssh-add to add your id_dsa private key file to ssh-agent, and set up your shell environment so that ssh will be able to find ssh-agent. If ssh-agent is already running, keychain will ensure that your id_dsa private key has been added to ssh-agent and then set up your environment so that ssh can find the already-running ssh-agent. It will look something like this:

Note that when keychain runs for the first time after your local system has booted, you will be prompted for a passphrase for your private key file if it is encrypted. But here's the nice thing about using keychain -- even if you are using an encrypted private key file, you will only need to enter your passphrase when your system first boots (or in the case of a server, when you first log in.) After that, ssh-agent is already running and has your decrypted private key cached in memory. So if you open a new shell, you will see something like this:

This means that you can now ssh to your heart's content, without supplying a passphrase.

You can also execute batch cron jobs and scripts that need to use ssh or scp, and they can take advantage of passwordless RSA/DSA authentication as well. To do this, you would add the following line to the top of a bash script:

   example-script.sh
eval `keychain --noask --eval id_dsa`

The extra --noask option tells keychain that it should not prompt for a passphrase if one is needed. Since it is not running interactively, it is better for the script to fail if the decrypted private key isn't cached in memory via ssh-agent.

Keychain Options

Specifying Agents

In the images above, you will note that keychain starts ssh-agent, but also starts gpg-agent. Modern versions of keychain also support caching decrypted GPG keys via use of gpg-agent, and will start gpg-agent by default if it is available on your system. To avoid this behavior and only start ssh-agent, modify your ~/.bash_profile as follows:

   ~/.bash_profile
eval `keychain --agents ssh --eval id_dsa`

The additional --agents ssh option tells keychain just to manage ssh-agent, and ignore gpg-agent even if it is available.

Clearing Keys

Sometimes, it might be necessary to flush all cached keys in memory. To do this, type:

root # keychain --clear

Any agent(s) will continue to run.

Improving Security

To improve the security of keychain, some people add the --clear option to their ~/.bash_profile keychain invocation. The rationale behind this is that any user logging in should be assumed to be an intruder until proven otherwise. This means that you will need to re-enter any passphrases when you log in, but cron jobs will still be able to run when you log out.

Stopping Agents

If you want to stop all agents, which will also of course cause your keys/identities to be flushed from memory, you can do this as follows:

root # keychain -k all

If you have other agents running under your user account, you can also tell keychain to just stop only the agents that keychain started:

root # keychain -k mine

GPG

Keychain can ask you for your GPG passphrase if you provide it the GPG key ID. To find it out:

user $ gpg -k
pub   2048R/DEADBEEF 2012-08-16
uid                  Name (Comment) <email@host.tld>
sub   2048R/86D2FAC6 2012-08-16

Note the DEADBEEF above is the ID. Then, in your login script, do your usual

user $ keychain --dir ~/.ssh/.keychain ~/.ssh/id_rsa DEADBEEF
user $ source ~/.ssh/.keychain/$HOST-sh
user $ source ~/.ssh/.keychain/$HOST-sh-gpg

Learning More

The instructions above will work on any system that uses bash as its default shell, such as most Linux systems and Mac OS X.

To learn more about the many things that keychain can do, including alternate shell support, consult the keychain man page, or type keychain --help | less for a full list of command options.

I also recommend you read my original series of articles about OpenSSH that I wrote for IBM developerWorks, called OpenSSH Key Management. Please note that keychain 1.0 was released along with Part 2 of this article, which was written in 2001. keychain has changed quite a bit since then. In other words, read these articles for the conceptual and OpenSSH information, but consult the keychain man page for command-line options and usage instructions :)

As mentioned at the top of the page, keychain development sources can be found in the keychain git repository. Please use the funtoo-dev mailing list and #funtoo irc channel for keychain support questions as well as bug reports.


   Note

Browse all our available articles below. Use the search field to search for topics and keywords in real-time.

Article Subtitle
Article Subtitle
Awk by Example, Part 1 An intro to the great language with the strange name
Awk by Example, Part 2 Records, loops, and arrays
Awk by Example, Part 3 String functions and ... checkbooks?
Bash by Example, Part 1 Fundamental programming in the Bourne again shell (bash)
Bash by Example, Part 2 More bash programming fundamentals
Bash by Example, Part 3 Exploring the ebuild system
BTRFS Fun
Funtoo Filesystem Guide, Part 1 Journaling and ReiserFS
Funtoo Filesystem Guide, Part 2 Using ReiserFS and Linux
Funtoo Filesystem Guide, Part 3 Tmpfs and Bind Mounts
Funtoo Filesystem Guide, Part 4 Introducing Ext3
Funtoo Filesystem Guide, Part 5 Ext3 in Action
GUID Booting Guide
Learning Linux LVM, Part 1 Storage management magic with Logical Volume Management
Learning Linux LVM, Part 2 The cvs.gentoo.org upgrade
Libvirt
Linux Fundamentals, Part 1
Linux Fundamentals, Part 2
Linux Fundamentals, Part 3
Linux Fundamentals, Part 4
LVM Fun
Making the Distribution, Part 1
Making the Distribution, Part 2
Making the Distribution, Part 3
Maximum Swappage Getting the most out of swap
On screen annotation Write on top of apps on your screen
OpenSSH Key Management, Part 1 Understanding RSA/DSA Authentication
OpenSSH Key Management, Part 2 Introducing ssh-agent and keychain
OpenSSH Key Management, Part 3 Agent Forwarding
Partition Planning Tips Keeping things organized on disk
Partitioning in Action, Part 1 Moving /home
Partitioning in Action, Part 2 Consolidating data
POSIX Threads Explained, Part 1 A simple and nimble tool for memory sharing
POSIX Threads Explained, Part 2
POSIX Threads Explained, Part 3 Improve efficiency with condition variables
Sed by Example, Part 1
Sed by Example, Part 2
Sed by Example, Part 3
Successful booting with UUID Guide to use UUID for consistent booting.
The Gentoo.org Redesign, Part 1 A site reborn
The Gentoo.org Redesign, Part 2 The Documentation System
The Gentoo.org Redesign, Part 3 The New Main Pages
The Gentoo.org Redesign, Part 4 The Final Touch of XML
Traffic Control
Windows 10 Virtualization with KVM