Difference between pages "ZFS Install Guide" and "Windows 7 Virtualization with KVM"

From Funtoo
(Difference between pages)
Jump to: navigation, search
(Updated video)
 
(KVM Setup)
 
Line 1: Line 1:
 +
This page describes how to set up Funtoo Linux to run Windows 7 Professional 32-bit within a KVM virtual machine. KVM is suitable for running Windows 7 for general desktop application use. It does not provide 3D support, but offers a nice, high-performance virtualization solution for day-to-day productivity applications. It is also very easy to set up.
 +
 
== Introduction ==
 
== Introduction ==
  
This tutorial will show you how to install Funtoo on ZFS (rootfs). This tutorial is meant to be an "overlay" over the [[Funtoo_Linux_Installation|Regular Funtoo Installation]]. Follow the normal installation and only use this guide for steps 2, 3, and 8.
+
KVM is a hardware-accelerated full-machine hypervisor and virtualization solution included as part of kernel 2.6.20 and later. It allows you to create and start hardware-accelerated virtual machines under Linux using the QEMU tools.
  
=== Introduction to ZFS ===
+
[[File:Windows7virt.png|400px|Windows 7 Professional 32-bit running within qemu-kvm]]
  
Since ZFS is a new technology for Linux, it can be helpful to understand some of its benefits, particularly in comparison to BTRFS, another popular next-generation Linux filesystem:
+
== KVM Setup ==
  
* On Linux, the ZFS code can be updated independently of the kernel to obtain the latest fixes. btrfs is exclusive to Linux and you need to build the latest kernel sources to get the latest fixes.
+
If you are using an automatically-built kernel, it is likely that kernel support for KVM is already available.
  
* ZFS is supported on multiple platforms. The platforms with the best support are Solaris, FreeBSD and Linux. Other platforms with varying degrees of support are NetBSD, Mac OS X and Windows. btrfs is exclusive to Linux.
+
If you build your kernel from scratch, please see [[KVM|the KVM page]] for detailed instructions on how to enable KVM. These instructions also cover the process of emerging qemu, which is also necessary. [[KVM|Do this first, as described on the KVM page]] -- then come back here.
  
* ZFS has the Adaptive Replacement Cache replacement algorithm while btrfs uses the Linux kernel's Last Recently Used replacement algorithm. The former often has an overwhelmingly superior hit rate, which means fewer disk accesses.
+
{{fancyimportant|Before using KVM, be sure that your user account is in the <tt>kvm</tt> group. You will need to use a command such as <tt>vigr</tt> as root to do this, and then log out and log back in for this to take effect.}}
  
* ZFS has the ZFS Intent Log and SLOG devices, which accelerates small synchronous write performance.
+
== Windows 7 ISO Images ==
  
* ZFS handles internal fragmentation gracefully, such that you can fill it until 100%. Internal fragmentation in btrfs can make btrfs think it is full at 10%. Btrfs has no automatic rebalancing code, so it requires a manual rebalance to correct it.
+
In this tutorial, we are going to install Windows 7 Professional, 32-bit Edition. Microsoft provides a free download of the ISO DVD image, but this does require a valid license key for installation. You can download Windows 7 Professional, 32 bit at the following location:
  
* ZFS has raidz, which is like RAID 5/6 (or a hypothetical RAID 7 that supports 3 parity disks), except it does not suffer from the RAID write hole issue thanks to its use of CoW and a variable stripe size. btrfs gained integrated RAID 5/6 functionality in Linux 3.9. However, its implementation uses a stripe cache that can only partially mitigate the effect of the RAID write hole.
+
http://msft-dnl.digitalrivercontent.net/msvista/pub/X15-65804/X15-65804.iso
  
* ZFS send/receive implementation supports incremental update when doing backups. btrfs' send/receive implementation requires sending the entire snapshot.
+
{{fancynote|Windows 7 Professional, 32-bit Edition is a free download but requires a valid license key for installation.}}
  
* ZFS supports data deduplication, which is a memory hog and only works well for specialized workloads. btrfs has no equivalent.
+
In addition, it's highly recommended that you download "VirtIO" drivers produced by Red Hat. These drivers are installed under Windows and significantly improve Windows 7 network and disk performance. You want to download the ISO file (not the ZIP file) at the following location:
  
* ZFS datasets have a hierarchical namespace while btrfs subvolumes have a flat namespace.
+
http://alt.fedoraproject.org/pub/alt/virtio-win/latest/images/
  
* ZFS has the ability to create virtual block devices called zvols in its namespace. btrfs has no equivalent and must rely on the loop device for this functionality, which is cumbersome.
+
== Create Raw Disk ==
  
The only area where btrfs is ahead of ZFS is in the area of small file
+
In this tutorial, we are going to create a 30GB raw disk image for Windows 7. Raw disk images offer better performance than the commonly-used QCOW2 format. Do this as a regular user:
efficiency. btrfs supports a feature called block suballocation, which
+
enables it to store small files far more efficiently than ZFS. It is
+
possible to use another filesystem (e.g. reiserfs) on top of a ZFS zvol
+
to obtain similar benefits (with arguably better data integrity) when
+
dealing with many small files (e.g. the portage tree).
+
 
+
=== Disclaimers ===
+
 
+
{{fancywarning|This guide is a work in progress. Expect some quirks.}}
+
{{fancyimportant|'''Since ZFS was really designed for 64 bit systems, we are only recommending and supporting 64 bit platforms and installations. We will not be supporting 32 bit platforms'''!}}
+
 
+
== Video Tutorial ==
+
 
+
As a companion to the install instructions below, a YouTube video ZFS install tutorial is now available:
+
 
+
{{#widget:YouTube|id=SWyThdxNoP8|width=640|height=360}}
+
 
+
{{fancyimportant|'''The video and guide are currently out of sync. The video has newer instructions. The guide needs to be updated.'''}}
+
 
+
== Downloading the ISO (With ZFS) ==
+
In order for us to install Funtoo on ZFS, you will need an environment that provides the ZFS tools. Therefore we will download a customized version of System Rescue CD with ZFS already included. When booting, use the "alternate"-kernel. The ZFS-module won't work with the default kernel.
+
 
+
<pre>
+
Name: sysresccd-4.0.1_zfs_0.6.2.iso  (545 MB)
+
Release Date: 2014-02-25
+
md5sum 01f4e6929247d54db77ab7be4d156d85
+
</pre>
+
 
+
 
+
'''[http://medd.homeip.net:3333/chinchilla/livecd/ Download System Rescue CD with ZFS]'''<br />
+
 
+
== Creating a bootable USB from ISO ==
+
After you download the iso, you can do the following steps to create a bootable USB:
+
  
 
<console>
 
<console>
Make a temporary directory
+
$ ##i##cd
# ##i##mkdir /tmp/loop
+
$ ##i##qemu-img create -f raw win7.img 30G
 
+
Mount the iso
+
# ##i##mount -o ro,loop /root/sysresccd-4.0.0_zfs_0.6.2.iso /tmp/loop
+
 
+
Run the usb installer
+
# ##i##/tmp/loop/usb_inst.sh
+
 
</console>
 
</console>
  
That should be all you need to do to get your flash drive working.
+
We now have an empty virtual disk image called <tt>win7.img</tt> in our home directory.
  
When you are booting into system rescue cd, make sure you select the '''alternative 64 bit kernel'''. ZFS support was specifically added to the alternative 64 bit kernel rather than the standard 64 bit kernel.
+
== QEMU script ==
  
== Creating partitions ==
+
Now, we'll create the following script to start our virtual machine and begin Windows 7 installation. Note that this script assumes that the two ISO files downloaded earlier were placed in the user's <tt>Downloads</tt> directory. Adjust paths as necessary if that is not the case. Also be sure to adjust the following parts of the script:
There are two ways to partition your disk: You can use your entire drive and let ZFS automatically partition it for you, or you can do it manually.
+
  
We will be showing you how to partition it '''manually''' because if you partition it manually you get to create your own layout, you get to have your own separate /boot partition (Which is nice since not every bootloader supports booting from ZFS pools), and you get to boot into RAID10, RAID5 (RAIDZ) pools and any other layouts due to you having a separate /boot partition.
+
* Adjust the name of <tt>VIRTIMG</tt> to match the exact name of the VirtIO ISO image you downloaded earlier
 +
* Adjust the <tt>smp</tt> option to use the number of CPU cores and threads (if your system has hyperthreading) of your Linux system's CPU.
  
==== gdisk (GPT Style) ====
+
Use your favorite text editor to create the following script. Name it something like <tt>vm.sh</tt>:
  
'''A Fresh Start''':
+
<syntaxhighlight lang="bash">
 +
#!/bin/sh
 +
export QEMU_AUDIO_DRV=alsa
 +
DISKIMG=~/win7.img
 +
WIN7IMG=~/Downloads/X15-65804.iso
 +
VIRTIMG=~/Downloads/virtio-win-0.1-74.iso
 +
qemu-kvm --enable-kvm -drive file=${DISKIMG},if=virtio -m 2048 \
 +
-net nic,model=virtio -net user -cdrom ${WIN7IMG} \
 +
-drive file=${VIRTIMG},index=3,media=cdrom \
 +
-rtc base=localtime,clock=host -smp cores=2,threads=4 \
 +
-usbdevice tablet -soundhw ac97 -cpu host -vga vmware
 +
</syntaxhighlight>
  
First lets make sure that the disk is completely wiped from any previous disk labels and partitions.
+
Now, make the script executable:
We will also assume that <tt>/dev/sda</tt> is the target drive.<br />
+
  
 
<console>
 
<console>
# ##i##gdisk /dev/sda
+
$ ##i##chmod +x vm.sh
 
+
Command: ##i##x
+
Expert command: ##i##z ↵
+
About to wipe out GPT on /dev/sda. Proceed?: ##i##y ↵
+
GPT data structures destroyed! You may now partition the disk using fdisk or other utilities.
+
Blank out MBR?: ##i##y ↵
+
 
</console>
 
</console>
  
{{fancywarning|This is a destructive operation. Make sure you really don't want anything on this disk.}}
+
Here is a brief summary of what the script does. It starts the <tt>qemu-kvm</tt> program and instructs it to use KVM to accelerate virtualization. The system disk is the 30GB raw image you created, and we tell QEMU to use "virtio" mode for this disk, as well as "virtio" for network access. This will require that we install special drivers during installation to access the disk and enable networking, but will give us better performance.
  
Now that we have a clean drive, we will create the new layout.
+
To assist us in installing the VirtIO drivers, we have configured the system with two DVD drives -- the first holds the Windows 7 installation media, and the second contains the VirtIO driver ISO that we will need to access during Windows 7 installation.
  
'''Create Partition 1''' (boot):
+
The <tt>-usbdevice tablet</tt> option will cause our mouse and keyboard interaction with our virtual environment to be intuitive and easy to use.
<console>
+
Command: ##i##n ↵
+
Partition Number: ##i##↵
+
First sector: ##i##↵
+
Last sector: ##i##+250M ↵
+
Hex Code: ##i##↵
+
</console>
+
  
'''Create Partition 2''' (BIOS Boot Partition):
+
{{fancyimportant|1=
<console>Command: ##i##n ↵
+
For optimal performance, adjust the script so that the <tt>-smp</tt> option specifies the exact number of cores and threads on your system -- on non-HyperThreading systems (AMD and some Intel), simply remove the <tt>,threads=X</tt> option entirely and just specify cores.. Also ensure that the <tt>-m</tt> option provides enough RAM for Windows 7, without eating up all your system's RAM. On a 4GB Linux system, use <tt>1536</tt>. For an 8GB system, <tt>2048</tt> is safe.}}
Partition Number: ##i##↵
+
First sector: ##i##↵
+
Last sector: ##i##+32M ↵
+
Hex Code: ##i##EF02 ↵
+
</console>
+
  
'''Create Partition 3''' (ZFS):
+
== Starting Windows 7 Installation ==
<console>Command: ##i##n ↵
+
Partition Number: ##i##↵
+
First sector: ##i##↵
+
Last sector: ##i##↵
+
Hex Code: ##i##bf00 ↵
+
  
Command: ##i##p ↵
+
Now, it's time to start Windows 7 installation. Run <tt>vm.sh</tt> as follows:
  
Number  Start (sector)    End (sector)  Size      Code  Name
 
  1            2048          514047  250.0 MiB  8300  Linux filesystem
 
  2          514048          579583  32.0 MiB    EF02  BIOS boot partition
 
  3          579584      1953525134  931.2 GiB  BF00  Solaris root
 
 
Command: ##i##w ↵
 
</console>
 
 
 
=== Format your boot volume ===
 
Format your separate <tt>/boot</tt> partition:
 
 
<console>
 
<console>
# ##i##mkfs.ext2 /dev/sda1
+
$ ##i##./vm.sh
 
</console>
 
</console>
  
=== Encryption (Optional) ===
+
Windows 7 installation will begin. During the installation process, you will need to enter a valid license key, and also load ''both'' VirtIO drivers from Red Hat when prompted (Browse to the second DVD, then win7 directory, then x86).
If you want encryption, then create your encrypted vault(s) now by doing the following:
+
 
+
<console>
+
# ##i##cryptsetup luksFormat /dev/sda3
+
# ##i##cryptsetup luksOpen /dev/sda3 vault_1
+
</console>
+
 
+
=== Create the zpool ===
+
We will first create the pool. The pool will be named `tank` and the disk will be aligned to 4096 (using ashift=12)
+
<console># ##i##zpool create -f -o ashift=12 -o cachefile= -O compression=on -m none -R /mnt/funtoo tank /dev/sda3</console>
+
 
+
{{fancyimportant|If you are using encrypted root, change '''/dev/sda3 to /dev/mapper/vault_1'''.}}
+
 
+
{{fancynote| '''ashift<nowiki>=</nowiki>12''' should be use if you have a newer, advanced format disk that has a sector size of 4096 bytes. If you have an older disk with 512 byte sectors, you should use '''ashift<nowiki>=</nowiki>9''' or don't add the option for auto detection.}}
+
 
+
{{fancynote| If you have a previous pool that you would like to import, you can do a: '''zpool import -f -R /mnt/funtoo <pool_name>'''.}}
+
 
+
=== Create the zfs datasets ===
+
We will now create some datasets. For this installation, we will create a small but future proof amount of datasets. We will have a dataset for the OS (/), and your swap. We will also show you how to create some optional datasets: <tt>/home</tt>, <tt>/var</tt>, <tt>/usr/src</tt>, and <tt>/usr/portage</tt>.
+
 
+
<console>
+
Create some empty containers for organization purposes, and make the dataset that will hold /
+
# ##i##zfs create -p tank/os/funtoo
+
# ##i##zfs create -o mountpoint=/ tank/os/funtoo/root
+
 
+
Optional, but recommended datasets: /home
+
# ##i##zfs create -o mountpoint=/home tank/os/funtoo/home
+
 
+
Optional datasets: /usr/src, /usr/portage/{distfiles,packages}
+
# ##i##zfs create -o mountpoint=/usr/src tank/os/funtoo/src
+
# ##i##zfs create -o mountpoint=/usr/portage -o compression=off tank/os/funtoo/portage
+
# ##i##zfs create -o mountpoint=/usr/portage/distfiles tank/os/funtoo/portage/distfiles
+
# ##i##zfs create -o mountpoint=/usr/portage/packages tank/os/funtoo/portage/packages
+
</console>
+
 
+
=== Create your swap zvol ===
+
'''Make your swap +1G greater than your RAM. An 8G machine would have 9G of SWAP (This is kinda big though). For machines with this much memory, You could just make it 2G if you don't have any problems.'''
+
<console>
+
# ##i##zfs create -o sync=always -o primarycache=metadata -o secondarycache=none -o volblocksize=4K -V 1G tank/swap
+
</console>
+
 
+
=== Format your swap zvol ===
+
<console>
+
# ##i##mkswap -f /dev/zvol/tank/swap
+
# ##i##swapon /dev/zvol/tank/swap
+
</console>
+
 
+
Now we will continue to install funtoo.
+
 
+
== Installing Funtoo ==
+
[[Funtoo_Linux_Installation|Download and extract the Funtoo stage3 and continue installation as normal.]]
+
 
+
Then once you've extracted the stage3, chroot into your new funtoo environment:
+
<console>
+
Go into the directory that you will chroot into
+
# ##i##cd /mnt/funtoo
+
 
+
Mount your boot drive
+
# ##i##mount /dev/sda1 /mnt/funtoo/boot
+
 
+
Bind the kernel related directories
+
# ##i##mount -t proc none /mnt/funtoo/proc
+
# ##i##mount --rbind /dev /mnt/funtoo/dev
+
# ##i##mount --rbind /sys /mnt/funtoo/sys
+
 
+
Copy network settings
+
# ##i##cp /etc/resolv.conf /mnt/funtoo/etc/
+
 
+
chroot into your new funtoo environment
+
# ##i##env -i HOME=/root TERM=$TERM chroot /mnt/funtoo /bin/bash --login
+
 
+
Place your mountpoints into your /etc/mtab file
+
# ##i##cat /proc/mounts > /etc/mtab
+
 
+
Sync your tree
+
# ##i##emerge --sync
+
</console>
+
 
+
=== Add filesystems to /etc/fstab ===
+
 
+
Before we continue to compile and or install our kernel in the next step, we will edit the <tt>/etc/fstab</tt> file because if we decide to install our kernel through portage, portage will need to know where is your <tt>/boot</tt> so that it can place the files in there. We also need to update <tt>/etc/mtab</tt> so our system knows what is mounted. Edit <tt>/etc/fstab</tt>:
+
 
+
<pre>
+
# <fs>                  <mountpoint>    <type>          <opts>          <dump/pass>
+
 
+
/dev/sda1              /boot          ext2            defaults        0 2
+
/dev/zvol/tank/swap    none            swap            sw              0 0
+
</pre>
+
 
+
== Kernel Configuration ==
+
To speed up this step, you can install "bliss-kernel" since it's already properly configured for ZFS and a lot of other configurations. The kernel is also compiled and ready to go. To install {{Package|sys-kernel/bliss-kernel}} type the following:
+
 
+
<console>
+
# ##i##emerge bliss-kernel
+
</console>
+
 
+
Now make sure that your <tt>/usr/src/linux symlink</tt> is pointing to this kernel by typing the following:
+
<console>
+
# ##i##eselect kernel list
+
Available kernel symlink targets:
+
[1]  linux-3.10.10-FB.01 *
+
</console>
+
You should see a star next to the bliss-kernel version you installed. In this case it was 3.10.10-FB.01. If it's not set, you can type '''eselect kernel set #'''.
+
 
+
== Installing the ZFS userspace tools and kernel modules ==
+
Emerge {{Package|sys-fs/zfs}}, {{Package|sys-kernel/spl}}, and {{Package|sys-fs/zfs-kmod}}:
+
<console># ##i##emerge zfs </console>
+
Check to make sure that the zfs tools are working, the <code>zpool.cache</code> file that you copied before should be displayed.
+
 
+
{{Fancynote| SPL stands for: Solaris Porting Layer}}
+
<console>
+
# ##i##zpool status
+
# ##i##zfs list
+
</console>
+
 
+
If everything worked, continue.
+
 
+
== Install the bootloader ==
+
=== GRUB 2 ===
+
Before you do this, make sure this checklist is followed:
+
* Installed kernel and kernel modules
+
* Installed zfs package from the tree
+
* <code>/dev</code>, <code>/proc</code>, <code>/sys</code> are mounted in the chroot environment
+
 
+
Once all this is checked, let's install grub2. First we need to enable the "libzfs" use flag so zfs support is compiled for grub2.
+
 
+
<console># ##i##echo "sys-boot/grub libzfs" >> /etc/portage/package.use</console>
+
 
+
Then we will compile grub2:
+
 
+
<console># ##i##emerge grub</console>
+
 
+
Once this is done, you can check that grub is version 2.00 by doing the following command:
+
<console>
+
# ##i##grub-install --version
+
grub-install (GRUB) 2.00
+
</console>
+
 
+
Now try to install {{Package|sys-boot/grub}}:
+
<console>
+
# ##i##grub-install --recheck /dev/sda
+
</console>
+
 
+
You should receive the following message:
+
<console>
+
Installation finished. No error reported.
+
</console>
+
 
+
If not, then go back to the above checklist.
+
 
+
=== LILO ===
+
Before you do this, make sure the following checklist is followed:
+
* <code>/dev</code>, <tt>/proc</tt> and <tt>/sys</tt> are mounted.
+
* Installed the {{Package|sys-fs/zfs}} package from the tree.
+
Once the above requirements are met, LILO can be installed.
+
 
+
Now we will install {{Package|sys-boot/lilo}}.
+
<console># ##i##emerge sys-boot/lilo</console>
+
Once the installation of LILO is complete we will need to edit the <tt>/etc/lilo.conf</tt> file:
+
 
+
 
+
<pre>
+
boot=/dev/sda
+
prompt
+
timeout=4
+
default=Funtoo
+
 
+
image=/boot/bzImage
+
      label=Funtoo
+
      read-only
+
      append="root=tank/os/funtoo/root"
+
      initrd=/boot/initramfs
+
</pre>
+
All that is left now is to install the bootcode to the MBR.
+
 
+
This can be accomplished by running:
+
<console># ##i##/sbin/lilo</console>
+
If it is successful you should see:
+
<console>
+
Warning: LBA32 addressing assumed
+
Added Funtoo + *
+
One warning was issued
+
</console>
+
 
+
== Create the initramfs ==
+
There are two ways to do this, you can use genkernel, or you can use my bliss initramfs creator. I will show you both.
+
 
+
=== genkernel ===
+
<console>
+
# ##i##emerge sys-kernel/genkernel
+
# You only need to add --luks if you used encryption
+
# ##i##genkernel --zfs --luks initramfs
+
</console>
+
 
+
=== Bliss Initramfs Creator ===
+
If you are encrypting your drives, then add the "luks" use flag to your package.use before emerging:
+
 
+
<console>
+
# ##i##echo "sys-kernel/bliss-initramfs luks" >> /etc/portage/package.use
+
</console>
+
 
+
Now install the creator:
+
 
+
<console>
+
# ##i##emerge bliss-initramfs
+
</console>
+
 
+
 
+
Then go into the install directory, run the script as root, and place it into /boot:
+
<console># ##i##cd /opt/bliss-initramfs
+
# ##i##./createInit
+
# ##i##mv initrd-<kernel_name> /boot
+
</console>
+
'''<kernel_name>''' is the name of what you selected in the initramfs creator, and the name of the outputted file.
+
 
+
== Using boot-update ==
+
=== /boot on separate partition ===
+
If you created a separate non-zfs partition for boot then configuring boot-update is almost exactly the same as a normal install except that auto detection for root does not work. You must tell boot-update what your root is.
+
==== Genkernel ====
+
If your using genkernel you must add 'real_root=ZFS=<root>' and 'dozfs' to your params.
+
Example entry for <tt>/etc/boot.conf</tt>:
+
 
+
<pre>
+
"Funtoo ZFS" {
+
        kernel vmlinuz[-v]
+
        initrd initramfs-genkernel-x86_64[-v]
+
        params real_root=ZFS=tank/os/funtoo/root
+
        params += dozfs=force
+
        # Also add 'params += crypt_root=/dev/sda3' if you used encryption
+
        # Adjust the above setting to your system if needed
+
}
+
</pre>
+
 
+
==== Bliss Initramfs Creator ====
+
If you used the Bliss Initramfs Creator then all you need to do is add 'root=<root>' to your params.
+
Example entry for <tt>/etc/boot.conf</tt>:
+
 
+
<pre>
+
"Funtoo ZFS" {
+
        kernel vmlinuz[-v]
+
        initrd initrd[-v]
+
        params root=tank/os/funtoo/root quiet
+
        # If you have an encrypted device with a regular passphrase,
+
        # you can add the following line
+
        params += enc_root=/dev/sda3 enc_type=pass
+
}
+
</pre>
+
 
+
After editing /etc/boot.conf, you just need to run boot-update to update grub.cfg
+
<console>
+
###i## boot-update
+
</console>
+
 
+
=== /boot on ZFS ===
+
TBC - pending update to boot-update to support this
+
 
+
== Final configuration ==
+
=== Add the zfs tools to openrc ===
+
<console># ##i##rc-update add zfs boot</console>
+
 
+
=== Clean up and reboot ===
+
We are almost done, we are just going to clean up, '''set our root password''', and unmount whatever we mounted and get out.
+
 
+
<console>
+
Delete the stage3 tarball that you downloaded earlier so it doesn't take up space.
+
# ##i##cd /
+
# ##i##rm stage3-latest.tar.xz
+
 
+
Set your root password
+
# ##i##passwd
+
>> Enter your password, you won't see what you are writing (for security reasons), but it is there!
+
 
+
Get out of the chroot environment
+
# ##i##exit
+
 
+
Unmount all the kernel filesystem stuff and boot (if you have a separate /boot)
+
# ##i##umount -l proc dev sys boot
+
 
+
Turn off the swap
+
# ##i##swapoff /dev/zvol/tank/swap
+
 
+
Export the zpool
+
# ##i##cd /
+
# ##i##zpool export tank
+
 
+
Reboot
+
# ##i##reboot
+
</console>
+
 
+
{{fancyimportant|'''Don't forget to set your root password as stated above before exiting chroot and rebooting. If you don't set the root password, you won't be able to log into your new system.'''}}
+
 
+
and that should be enough to get your system to boot on ZFS.
+
 
+
== After reboot ==
+
=== Create initial ZFS Snapshot ===
+
Continue to set up anything you need in terms of /etc configurations. Once you have everything the way you like it, take a snapshot of your system. You will be using this snapshot to revert back to this state if anything ever happens to your system down the road. The snapshots are cheap, and almost instant.
+
 
+
To take the snapshot of your system, type the following:
+
<console># ##i##zfs snapshot -r tank@install</console>
+
 
+
To see if your snapshot was taken, type:
+
<console># ##i##zfs list -t snapshot</console>
+
 
+
If your machine ever fails and you need to get back to this state, just type (This will only revert your / dataset while keeping the rest of your data intact):
+
<console># ##i##zfs rollback tank/os/funtoo/root@install</console>
+
  
{{fancyimportant|'''For a detailed overview, presentation of ZFS' capabilities, as well as usage examples, please refer to the [[ZFS_Fun|ZFS Fun]] page.'''}}
+
After some time, Windows 7 installation will complete. You will be able to perform Windows Update, as by default, you will have network access if your host Linux system has network access.
  
[[Category:HOWTO]]
+
Enjoy your virtualized Windows 7 system!
[[Category:Filesystems]]
+
[[Category:Featured]]
+
  
__NOTITLE__
+
[[Category:Tutorial]]
 +
[[Category:First Steps]]
 +
[[Category:Virtualization]]
 +
[[Category:KVM]]

Revision as of 08:07, 4 March 2014

This page describes how to set up Funtoo Linux to run Windows 7 Professional 32-bit within a KVM virtual machine. KVM is suitable for running Windows 7 for general desktop application use. It does not provide 3D support, but offers a nice, high-performance virtualization solution for day-to-day productivity applications. It is also very easy to set up.

Contents

Introduction

KVM is a hardware-accelerated full-machine hypervisor and virtualization solution included as part of kernel 2.6.20 and later. It allows you to create and start hardware-accelerated virtual machines under Linux using the QEMU tools.

Windows 7 Professional 32-bit running within qemu-kvm

KVM Setup

If you are using an automatically-built kernel, it is likely that kernel support for KVM is already available.

If you build your kernel from scratch, please see the KVM page for detailed instructions on how to enable KVM. These instructions also cover the process of emerging qemu, which is also necessary. Do this first, as described on the KVM page -- then come back here.

Important: Before using KVM, be sure that your user account is in the kvm group. You will need to use a command such as vigr as root to do this, and then log out and log back in for this to take effect.

Windows 7 ISO Images

In this tutorial, we are going to install Windows 7 Professional, 32-bit Edition. Microsoft provides a free download of the ISO DVD image, but this does require a valid license key for installation. You can download Windows 7 Professional, 32 bit at the following location:

http://msft-dnl.digitalrivercontent.net/msvista/pub/X15-65804/X15-65804.iso

Note: Windows 7 Professional, 32-bit Edition is a free download but requires a valid license key for installation.

In addition, it's highly recommended that you download "VirtIO" drivers produced by Red Hat. These drivers are installed under Windows and significantly improve Windows 7 network and disk performance. You want to download the ISO file (not the ZIP file) at the following location:

http://alt.fedoraproject.org/pub/alt/virtio-win/latest/images/

Create Raw Disk

In this tutorial, we are going to create a 30GB raw disk image for Windows 7. Raw disk images offer better performance than the commonly-used QCOW2 format. Do this as a regular user:

$ cd
$ qemu-img create -f raw win7.img 30G

We now have an empty virtual disk image called win7.img in our home directory.

QEMU script

Now, we'll create the following script to start our virtual machine and begin Windows 7 installation. Note that this script assumes that the two ISO files downloaded earlier were placed in the user's Downloads directory. Adjust paths as necessary if that is not the case. Also be sure to adjust the following parts of the script:

  • Adjust the name of VIRTIMG to match the exact name of the VirtIO ISO image you downloaded earlier
  • Adjust the smp option to use the number of CPU cores and threads (if your system has hyperthreading) of your Linux system's CPU.

Use your favorite text editor to create the following script. Name it something like vm.sh:

#!/bin/sh
export QEMU_AUDIO_DRV=alsa 
DISKIMG=~/win7.img
WIN7IMG=~/Downloads/X15-65804.iso
VIRTIMG=~/Downloads/virtio-win-0.1-74.iso
qemu-kvm --enable-kvm -drive file=${DISKIMG},if=virtio -m 2048 \
-net nic,model=virtio -net user -cdrom ${WIN7IMG} \
-drive file=${VIRTIMG},index=3,media=cdrom \
-rtc base=localtime,clock=host -smp cores=2,threads=4 \
-usbdevice tablet -soundhw ac97 -cpu host -vga vmware

Now, make the script executable:

$ chmod +x vm.sh

Here is a brief summary of what the script does. It starts the qemu-kvm program and instructs it to use KVM to accelerate virtualization. The system disk is the 30GB raw image you created, and we tell QEMU to use "virtio" mode for this disk, as well as "virtio" for network access. This will require that we install special drivers during installation to access the disk and enable networking, but will give us better performance.

To assist us in installing the VirtIO drivers, we have configured the system with two DVD drives -- the first holds the Windows 7 installation media, and the second contains the VirtIO driver ISO that we will need to access during Windows 7 installation.

The -usbdevice tablet option will cause our mouse and keyboard interaction with our virtual environment to be intuitive and easy to use.

Important: For optimal performance, adjust the script so that the -smp option specifies the exact number of cores and threads on your system -- on non-HyperThreading systems (AMD and some Intel), simply remove the ,threads=X option entirely and just specify cores.. Also ensure that the -m option provides enough RAM for Windows 7, without eating up all your system's RAM. On a 4GB Linux system, use 1536. For an 8GB system, 2048 is safe.

Starting Windows 7 Installation

Now, it's time to start Windows 7 installation. Run vm.sh as follows:

$ ./vm.sh

Windows 7 installation will begin. During the installation process, you will need to enter a valid license key, and also load both VirtIO drivers from Red Hat when prompted (Browse to the second DVD, then win7 directory, then x86).

After some time, Windows 7 installation will complete. You will be able to perform Windows Update, as by default, you will have network access if your host Linux system has network access.

Enjoy your virtualized Windows 7 system!