Difference between pages "UEFI Install Guide" and "Subarches"

From Funtoo
(Difference between pages)
Jump to navigation Jump to search
 
 
Line 1: Line 1:
This tutorial will show you how to install Funtoo on a UEFI system. UEFI, also known as the [[Wikipedia:Unified Extensible Firmware Interface|Unified Extensible Firmware Interface]], is a new firmware interface that is used on some newer computers as a replacement for the traditional PC BIOS. It has an integrated boot loader, so setting up booting is different. The recommended approach is to follow the [[ Efi Stub Method ]]. Many have reported that they are now unable to boot their system using the other, older method.
{{:Install/Header}}
= Funtoo Linux Sub-Architectures =
__NOTITLE__
This page provides an overview of Funtoo Linux sub-architectures (also called ''subarches'',) designed for quick and easy reference. While this information is available in other places, such as Wikipedia, it often takes some time to study and cross-reference the various articles to get a good understanding of each type of sub-architecture, and this information generally isn't all collected neatly in one place. That is the purpose of this page. When possible, links to more detailed Wikipedia pages are provided. You are encouraged to help maintain this page as well as the Wikipedia articles referenced here.


This tutorial is meant to be an "overlay" over the Regular Funtoo Installation. Follow the normal installation and only follow steps in this tutorial when dealing with partitioning and configuring the boot loader (GRUB). All steps are otherwise identical to the regular installation process.
== 64-bit Suport (Generic) ==


== What Are We Doing? ==
=== generic_64 ===


This guide will show you how to set up your UEFI system to load the GRUB boot loader, which will then load your Funtoo Linux kernel and initramfs. This is the "UEFI + GRUB" method as described on the [[Boot Methods]] page.
The '''generic_64''' subarch is designed to support 64-bit PC-compatible CPUs, such as the [[Wikipedia:AMD_K8|AMD K8-series processors]], which were introduced in late 2003. They were notable as the first processors that supported the [[Wikipedia:X86-64|AMD64 (also called X86-64) 64-bit instruction set]] for PC-compatible systems, which was introduced as a backwards-compatible 64-bit alternative to Intel's IA-64 architecture. Intel followed suit and also began supporting this 64-bit instruction set, which they called "[[Wikipedia:X86-64#Intel_64|Intel 64]]", by releasing X86-64 64-bit compatible CPUs from mid-2004 onwards (See [[Wikipedia:X86-64#Intel_64_implementations|Intel 64 implementations]].)


== First Steps ==
AMD desktop 64-bit CPUs include the Athlon 64, Athlon 64 FX, Athlon 64 X2, Athlon X2, Turion 64, Turion 64 X2 and Sempron series processors. AMD server processors were released under the Opteron brand and have codenames SledgeHammer, Venus, Troy, Athens, Denmark, Italy, Egypt, Santa Ana and Santa Rosa. All Opterons released through late 2006 were based on the K8 microarchitecture with original X86-64 instructions.


To install Funtoo Linux on a UEFI system, first you need to boot SysRescueCD in UEFI mode. To do this, enable UEFI in your BIOS, and if necessary disable legacy booting. After some fiddling, you should be able to boot SysRescueCD and get a black and white text menu instead of the traditional aqua/cyan-colored menu. The black and white menu indicates that you booted SysRescueCD in UEFI mode. Once you've accomplished this, you're ready to continue with your Funtoo Linux installation and partition your drive. See below for details.
== 64-bit AMD Processors ==


{{fancynote|If the <tt>/sys/firmware/efi</tt> directory exists, then you have successfully booted in EFI mode and will be able to configure your Funtoo system to boot in EFI mode. If the directory doesn't exist, fix this first. It is a requirement for setting up EFI booting.}}
=== amd64-k10 ===
<console>
CFLAGS: -march=amdfam10 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 3dnow 3dnowext
</console>


== Partitioning ==
CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit instruction set extensions.)


To set up your partitions for UEFI booting, you will create a ~500MB FAT32 partition on <tt>/dev/sda1</tt>, and set it to type <tt>EF00</tt> using <tt>gdisk</tt>.  
The '''amd64-k10''' subarch provides support for the [[Wikipedia:AMD_10h|AMD Family 10h processors]], which were released in late 2007 as a successor to the AMD K8 series processors.


<console>
Desktop amd64-k10 CPUs include [[Wikipedia:AMD Phenom|AMD Phenom]], [[Wikipedia:AMD_10h#Phenom_II_Models|AMD Phenom II]] and [[Wikipedia:AMD_10h#Athlon_II_Models|AMD Athlon II]]. Server CPUs include Opterons with codenames Budapest, Barcelona, Suzuka, Shanghai, Istanbul, Lisbon, and Magny-Cours. A full listing of amd64-k10 Opteron models [[Wikipedia:List_of_AMD_Opteron_microprocessors#K10_based_Opterons|can be found here]].
Command: ##i##n ↵
Partition Number: ##i##1 ↵
First sector: ##i##↵
Last sector: ##i##+500M ↵
Hex Code: ##i##EF00
</console>
 
This partition will serve as your Funtoo <tt>/boot</tt> filesystem as well as the partition that the UEFI firmware can read to load GRUB. Then you will set up swap on <tt>/dev/sda2</tt> and your root filesystem on <tt>/dev/sda3</tt>. To create the FAT32 filesystem, type:


=== amd64-bulldozer ===
<console>
<console>
# ##i##mkfs.vfat -F 32 /dev/sda1
CFLAGS: -march=bdver1 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext
</console>
</console>


Your <tt>/etc/fstab</tt> entry for this filesystem will also differ, and will look like this:
CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)


<pre>
The '''amd64-bulldozer''' subarch supports the [[Wikipedia:Bulldozer (microarchitecture)|AMD bulldozer microarchitecture]] CPUs, which were released from late 2011 through the first quarter of 2012 as a replacement for the [[Wikipedia:AMD_10h|K10 microarchitecture]] CPUs.
/dev/sda1 /boot vfat noatime 1 2
Bulldozer desktop CPUs use the [[Wikipedia:Socket_AM3+|AM3+ socket]] and server CPUs use the  [[Wikipedia:Socket_G34|G34 socket]].
</pre>


== Kernel ==
Desktop bulldozer CPUs include the [[Wikipedia:List_of_AMD_FX_microprocessors#.22Zambezi.22_.2832_nm_SOI.29|Zambezi FX-series CPUs]]. Server bulldozer CPUs include Opterons with codenames Zurich (Opteron 3200-series), Valencia (Opteron 4200-series) and Interlagos (Opteron 6200 series). A complete list of Opteron models [[Wikipedia:http://en.wikipedia.org/wiki/Opteron#Opteron_.2832_nm_SOI.29-_First_Generation_Bulldozer_Microarchitecture|can be found here.]].


=== VFAT ===
=== amd64-piledriver ===
<console>
CFLAGS: -march=bdver2 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext
</console>


Make sure you add VFAT support to your kernel if you are building it manually.
AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)


=== EFI Framebuffer ===
The '''amd64-piledriver''' subarch supports the [[Wikipedia:Piledriver (microarchitecture)|AMD Piledriver microarchitecture]] produced by AMD from mid-2012 through 2015, which is the successor to the [[Wikipedia:Bulldozer (microarchitecture)|AMD bulldozer microarchitecture]].
Piledriver CPUs and APUs are available that use the [[Wikipedia:FM2 Socket|FM2 socket]]. Desktop Piledriver CPUs use the [[Wikipedia:Socket_AM3+|AM3+ socket]]. Server Piledriver CPUs use a variety of sockets, including [[Wikipedia:Socket_AM3+|AM3+]], [[Wikipedia:Socket_C32|C32]] and [[Wikipedia:Socket_G34|G34]].


If you have the following option enabled in your kernel, then uvesafb and efifb will not be able to detect the framebuffer:
Desktop piledriver CPU and APUs include FX-series with codename Vishera (FX-8350, FX-8370),  [[Wikipedia:List_of_AMD_accelerated_processing_unit_microprocessors#Virgo:_.22Trinity.22_.282012.2C_32_nm.29|A-series with codename Trinity]] (A6-5400K, A10-5800K) and [[Wikipedia:http://en.wikipedia.org/wiki/List_of_AMD_accelerated_processing_unit_microprocessors#.22Richland.22_.282013.2C_32_nm.29_2|A-series with codename Richland]].


{{kernelop|title=Bus options (PCI etc.)|desc=
Server piledriver CPUs include Opterons with codenames Delhi (Opteron 3300-series, [[Wikipedia:Socket_AM3+|AM3+]]), Seoul (Opteron 4300-series, [[Wikipedia:Socket_C32|C32]]) and Abu Dhabi (Opteron 6300-series, [[Wikipedia:Socket_G34|G34]]). A full listing of Opteron models [[Wikipedia:Opteron#Opteron_.2832_nm_SOI.29_-_Piledriver_Microarchitecture|is available here]].
    [*] Mark VGA/VBE/EFI FB as generic system framebuffer (NEW)
}}


If you have that option enabled, ''you must also enable'':
Piledriver adds several new instructions over bulldozer, so AMD bulldozer systems cannot run amd64-piledriver-optimized stages. However, this subarch is  instruction-compatible with its successor, the, so amd64-piledriver stages can run on amd64-steamroller systems, and vice versa.


{{kernelop|title=Device Drivers,Graphics support,Frame buffer Devices|desc=
=== amd64-steamroller ===
    [*]  Simple framebuffer support
<console>
}}
CFLAGS: -march=bdver3 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext
</console>


This is the preferred method of using the EFI framebuffer, the efifb and uvesafb drivers will be used as a fallback if the above is not compatible.
AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.  
=== Grub method ===


==== Unmask Grub 2.02_beta2 ====
The '''amd64-steamroller''' subarch supports the  [[Wikipedia:Steamroller (microarchitecture)|AMD steamroller microarchitecture]], produced from early 2014. It is the successor to the [[Wikipedia:Piledriver (microarchitecture)|AMD Piledriver microarchitecture]].
Steamroller APUs are available that use the [[Wikipedia:FM2+ Socket|FM2+ socket]] and  [[Wikipedia:Socket_FP3|FP3 socket]] (mobile.)


Unmask the latest version of GRUB by placing this in your <code>/etc/portage/package.unmask</code>:
Desktop steamroller APUs include the [[Wikipedia:AMD_Accelerated_Processing_Unit#Steamroller_architecture_.282014.29:_Kaveri|A-Series with codename Kaveri]], such as the quad-core AMD A10-7850K APU. Steamroller APUs are also available in mobile versions. Server steamroller APUs will include the codename Berlin APUs, which are expected to be released some time in 2015.


<pre>
Amd64-steamroller subarches are instruction-compatible with amd64-piledriver, but add new instructions over amd64-bulldozer.
sys-boot/grub
</pre>


The 2.00 version of GRUB has known issues with UEFI booting. Using 2.02 is essential for having this boot method work reliably.
=== amd64-jaguar ===


==== Emerging GRUB ====
The '''amd64-jaguar''' (also called AMD Family 16h) subarch supports the  [[Wikipedia:Jaguar (microarchitecture)|AMD jaguar microarchitecture]], which is targeted at low-power devices, including notebooks, tablets and small form-factor desktops and servers. It is perhaps most well-known for being the microarchitecture used for the [[Wikipedia:Playstation 4|Playstation 4]] and [[Wikipedia:Xbox One|Xbox One]], which each use custom 8-core Jaguar APUs.
Socketed Jaguar APUs use the [[Wikipedia:AM1 Socket|AM1 socket]], and  [[Wikipedia:Socket_FT3|FT3 socket]] for mobile devices. G-series [[Wikipedia:System_on_a_chip|"system on a chip" (SoC)]] APUs are available for non-socketed devices such as tablets and embedded system boards.


You will still use GRUB as a boot loader, but before emerging grub, you will need to enable EFI booting. To do this,  
Desktop Jaguar APUs include the [[Wikipedia:List_of_AMD_accelerated_processing_unit_microprocessors#.22Kabini.22.2C_.22Temash.22_.282013.2C_28_nm.29|Kabini A-series APUs and Temash E-series APUs]], such as the Athlon 5150 and 5350 APUs, and Sempron 2650 and 3850.
add the following line to <tt>/etc/portage/make.conf</tt>:


<pre>
Amd64-jaguar subarches use the MOVBE instruction which is not available on amd64-bulldozer, amd64-piledriver or amd64-steamroller. They are thus not instruction-compatible with any of these subarches.
GRUB_PLATFORMS="efi-64"
</pre>


Then, <tt>emerge grub</tt>. You will notice <tt>efibootmgr</tt> getting pulled in as a dependency. This is expected and good.
== 64-bit Intel Processors ==


==== Installing GRUB ====
=== corei7 ===
<console>
CFLAGS: -march=corei7 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 ssse3 sse4
</console>
Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2 instruction set support.


Now, for the magic of getting everything in place for booting. You should copy your kernel and initramfs (if you have one -- you will if you are following the default install) to <tt>/boot</tt>. GRUB will boot those. But how do we get UEFI to boot GRUB? Well, we need to run the following command:
Introduced November of 2008, the '''corei7''' subarch supports the [[Wikipedia:Nehalem_(microarchitecture)|Nehalem microarchitecture]], [[Wikipedia:Sandy_Bridge_(microarchitecture)|Sandy Bridge microarchitecture]], [[Wikipedia:Ivy_Bridge_(microarchitecture)|Ivy Bridge microarchitecture]], and [[Wikipedia:Haswell_(microarchitecture)|Haswell microarchitecture]].


=== core2_64 ===
<console>
<console>
# ##i##grub-install --target=x86_64-efi --efi-directory=/boot --bootloader-id="Funtoo Linux [GRUB]" --recheck /dev/sda
CFLAGS: -march=core2 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 ssse3
</console>
</console>
This command will simply install all the stuff to <tt>/boot/EFI</tt> and <tt>/boot/grub</tt> that your system needs to boot. In particular, the <tt>/boot/EFI/grub/grubx64.efi</tt> file will be created. This is the GRUB boot image that UEFI will load and start.


A more detailed explanation of the flags used in the above command:
Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support.  
* <code>--target=x86_64-efi</code>: Tells GRUB that we want to install it in a way that allows it to boot in UEFI
* <code>--efi-directory=/boot</code>: All GRUB UEFI files will be installed in ''/boot''
* <code>--bootloader-id="Funtoo Linux [GRUB]"</code>: This flag is not necessary for GRUB to boot. However, it allows you to change the text of the boot option in the UEFI BIOS. The stuff in the quotes can be set to anything that you would like.
* <code>--recheck</code>: If a device map already exists on the disk or partition that GRUB is being installed on, it will be removed.
* <code>/dev/sda</code>:The device that we are installing GRUB on.


==== Configuring GRUB ====
The '''core2_64''' subarch supports 64-bit-capable [[Wikipedia:Intel_Core_2|Intel Core 2 Processors]], which includes ''some'' processors of the [[Wikipedia:Intel Core (microarchitecture)|Core]] and all processors of the [[Wikipedia:Penryn_(microarchitecture)|Penryn]] microarchitecture. All "Core 2" branded processors are 64-bit-capable. These processors were introduced in July of 2006 and were phased out in July of 2011, in favor of  [[Wikipedia:Nehalem_(microarchitecture)|Nehalem-based]] processors.


OK, now UEFI has the GRUB image it needs to boot. But we still need to configure GRUB itself so it finds and boots your kernel and initramfs. This is done by performing the following steps. Since boot-update doesn't yet support UEFI, we will use boot-update, but then edit our <code>/boot/grub/grub.cfg</code> to support UEFI booting.  
For a full list of 64-bit capable Core 2 processors, [http://ark.intel.com/search/advanced?s=t&FamilyText=Legacy%20Intel%C2%AE%20Core%E2%84%A22%20Processor&InstructionSet=64-bit see this link].


First, you will need to edit <code>/etc/boot.conf</code>. Format this as you would if you were booting without UEFI. If you are not sure how this should look, below is an example of what it could look like if you are booting from an unencrypted ext4 partition:
The 64-bit capable ''Core 2''-branded CPUs include: "Conroe"/"Allendale" (dual-core for desktops), "Merom" (dual-core for laptops), "Merom-L" (single-core for laptops), "Kentsfield" (quad-core for desktops), and the updated variants named "Wolfdale" (dual-core for desktops), "Penryn" (dual-core for laptops), and "Yorkfield" (quad-core for desktops). (Note: ''For the server and workstation "Woodcrest", "Tigerton", "Harpertown" and "Dunnington" CPUs see the [[Wikipedia:Xeon|Xeon]] brand''.)


{{file|name=/etc/boot.conf|desc=|body=
=== atom_64 ===
boot {
<console>
        generate grub
CFLAGS: -O2 -fomit-frame-pointer -march=atom -pipe -mno-movbe
        default "Funtoo Linux"
CHOST: x86_64-pc-linux-gnu
        timeout 3
USE: mmx sse sse2 sse3
}
</console>
 
"Funtoo Linux" {
        kernel vmlinuz[-v]
        params += rootfstype=ext4 root=/dev/sda2
}
}}
 
After you have edited your <code>/etc/boot.conf</code> file, run <code>boot-update</code>. If you check your <code>/boot/grub/grub.cfg</code> now, you should see something like this:
 
{{file|name=/boot/grub/grub.cfg|desc=|body=
set timeout=3
 
  insmod part_gpt
  insmod fat
  set root=(hostdisk//dev/sda,gpt1)
  search --no-floppy --fs-uuid --set 3CFD-6884
if loadfont /grub/unifont.pf2; then
  set gfxmode=text
  insmod gfxterm
  insmod vbe
  terminal_output gfxterm
fi
 
set menu_color_normal=cyan/blue
set menu_color_highlight=blue/cyan


menuentry "Funtoo Linux - vmlinuz-3.16.3" {
Intel Atom CPU with 64-bit extensions MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support.
  insmod part_gpt
  insmod fat
  set root=(hostdisk//dev/sda,gpt1)
  search --no-floppy --fs-uuid --set 3CFD-6884
  linux /vmlinuz-3.16.3 video=uvesafb:1920x1080-32,mtrr:3,ywrap rootfstype=ext4 root=/dev/sda2
  set gfxpayload=text
}
set default=0
}}


To get your <code>/boot/grub/grub.cfg</code> to support booting with UEFI, make your <code>/boot/grub/grub.cfg</code> look like this:
The Intel Atom Processor is the common name for Intel's  [[Wikipedia:Bonnell_(microarchitecture)|Bonnell microarchitecture]],  which represents a partial revival of the principles used in earlier Intel designs such as P5 and the i486, with the sole purpose of enhancing the performance per watt ratio. Successor to the [[Wikipedia:Stealey_(microprocessor)|Intel A100 series (Stealey)]], which was derived from the [[Wikipedia:Pentium_M|Pentium M]], the Intel Atom has been produced since 2008. Targeted at low-power devices, Atom processors can be found in a wide range of notebooks, tablets and small form-factor desktops and servers.  
{{file|name=/boot/grub/grub.cfg|desc=|body=
set timeout=3


  insmod part_gpt
The '''atom_64''' sub-architecture supports 64-bit capable Intel Atom CPUs.  The first 64-bit capable Intel Atom CPUs were the Intel Atom 230 and 330, released in late 2008. However, Intel also continued to produce new 32-bit Atom Processors after this date. For example, the Atom N2xx series Atom Diamondville models cannot support 64-bit operation, while the 2xx and 3xx Diamondville, Pineview, Cedarview and Centerton can. A full list of 64-bit capable Intel Atom Processors [http://ark.intel.com/search/advanced?s=t&FamilyText=Intel%C2%AE%20Atom%E2%84%A2%20Processor&InstructionSet=64-bit can be seen here.]
  insmod fat
  insmod efi_gop
  insmod efi_uga
  set root=(hostdisk//dev/sda,gpt1)
  search --no-floppy --fs-uuid --set 3CFD-6884
if loadfont /grub/unifont.pf2; then
  set gfxmode=auto
  insmod gfxterm
  insmod vbe
  terminal_output gfxterm
fi


set menu_color_normal=cyan/blue
{{Important|For 64-bit support to be functional, a 64-bit capable Atom Processor must be paired ''with a processor, chipset, and BIOS'' that all support [[Wikipedia:X86-64#Intel_64|Intel 64]]. If not all hardware supports 64-bit, then you must use the [[subarches#atom_32|atom_32]] subarch instead.}}
set menu_color_highlight=blue/cyan


menuentry "Funtoo Linux - vmlinuz-3.16.3" {
== 32-bit Suport (Generic) ==
  insmod part_gpt
=== generic_32 ===
  insmod fat
  set root=(hostdisk//dev/sda,gpt1)
  search --no-floppy --fs-uuid --set 3CFD-6884
  linux /vmlinuz-3.16.3 video=uvesafb:1920x1080-32,mtrr:3,ywrap rootfstype=ext4 root=/dev/sda2
  set gfxpayload=keep
}
set default=0
}}


The lines that we have added and altered do the following:
== 32-bit AMD Processors ==
* <code>insmod efi_gop</code> and <code>insmod efi_uga</code>: Both of these involve adding support for the UEFI framebuffer to GRUB.
=== amd64-k8_32 ===
* <code>set gfxmode=auto</code>: Instead of having the GRUB boot option screen being displayed at the smallest resolution possible, changing this to auto will make it fit the resolution of your display.
=== athlon-xp ===


== Known Issues ==
== 32-bit ARM Processors ==
*With pure UEFI boot mode, with legacy mode disabled, following error expected:
=== armv5te ===
** video driver not supported, boot hangs, hard reboot required.
=== armv6j_hardfp ===
*Choose UEFI first, next legacy driver. It depends on motherboard vendor and efi bios version.
=== armv7a_hardfp ===
**In UEFI bios choose grub option, if your succeeded with above guide, additional menu should appear in Boot Menu, otherwise it boots into EFI shell: <code>grub:NAME of you hard drive</code>
* On some systems, installing the packages that are required for UEFI booting with any gcc later than a 4.x.x release may lead to a black screen after the GRUB screen. To fix this, before you begin installing any packages on your system, emerge =gcc-4.6.4-r2 and proceed with the installation as usual. Remember to switch your compiler back to the version of gcc that came with your system after you have finished installing. To do this, use <code>gcc-config 2</code>. This problem can also be fixed by following the [[Efi Stub guide]] instead of the GRUB one.


=== Done! ===
== 32-bit Intel Processors ==
=== atom_32 ===
=== core2_32 ===
=== i686 ===
=== pentium4 ===


Remember to follow all other steps in the regular Funtoo Install Guide. Assuming you did everything correctly, your system should now boot via UEFI! We will be adding UEFI support to boot-update soon to make this process easier.


[[Category:HOWTO]]
{{:Install/Footer}}

Revision as of 20:58, November 18, 2014

Funtoo Linux Sub-Architectures

This page provides an overview of Funtoo Linux sub-architectures (also called subarches,) designed for quick and easy reference. While this information is available in other places, such as Wikipedia, it often takes some time to study and cross-reference the various articles to get a good understanding of each type of sub-architecture, and this information generally isn't all collected neatly in one place. That is the purpose of this page. When possible, links to more detailed Wikipedia pages are provided. You are encouraged to help maintain this page as well as the Wikipedia articles referenced here.

64-bit Suport (Generic)

generic_64

The generic_64 subarch is designed to support 64-bit PC-compatible CPUs, such as the AMD K8-series processors, which were introduced in late 2003. They were notable as the first processors that supported the AMD64 (also called X86-64) 64-bit instruction set for PC-compatible systems, which was introduced as a backwards-compatible 64-bit alternative to Intel's IA-64 architecture. Intel followed suit and also began supporting this 64-bit instruction set, which they called "Intel 64", by releasing X86-64 64-bit compatible CPUs from mid-2004 onwards (See Intel 64 implementations.)

AMD desktop 64-bit CPUs include the Athlon 64, Athlon 64 FX, Athlon 64 X2, Athlon X2, Turion 64, Turion 64 X2 and Sempron series processors. AMD server processors were released under the Opteron brand and have codenames SledgeHammer, Venus, Troy, Athens, Denmark, Italy, Egypt, Santa Ana and Santa Rosa. All Opterons released through late 2006 were based on the K8 microarchitecture with original X86-64 instructions.

64-bit AMD Processors

amd64-k10

CFLAGS: -march=amdfam10 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 3dnow 3dnowext

CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit instruction set extensions.)

The amd64-k10 subarch provides support for the AMD Family 10h processors, which were released in late 2007 as a successor to the AMD K8 series processors.

Desktop amd64-k10 CPUs include AMD Phenom, AMD Phenom II and AMD Athlon II. Server CPUs include Opterons with codenames Budapest, Barcelona, Suzuka, Shanghai, Istanbul, Lisbon, and Magny-Cours. A full listing of amd64-k10 Opteron models can be found here.

amd64-bulldozer

CFLAGS: -march=bdver1 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext

CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)

The amd64-bulldozer subarch supports the AMD bulldozer microarchitecture CPUs, which were released from late 2011 through the first quarter of 2012 as a replacement for the K10 microarchitecture CPUs. Bulldozer desktop CPUs use the AM3+ socket and server CPUs use the G34 socket.

Desktop bulldozer CPUs include the Zambezi FX-series CPUs. Server bulldozer CPUs include Opterons with codenames Zurich (Opteron 3200-series), Valencia (Opteron 4200-series) and Interlagos (Opteron 6200 series). A complete list of Opteron models can be found here..

amd64-piledriver

CFLAGS: -march=bdver2 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext

AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)

The amd64-piledriver subarch supports the AMD Piledriver microarchitecture produced by AMD from mid-2012 through 2015, which is the successor to the AMD bulldozer microarchitecture. Piledriver CPUs and APUs are available that use the FM2 socket. Desktop Piledriver CPUs use the AM3+ socket. Server Piledriver CPUs use a variety of sockets, including AM3+, C32 and G34.

Desktop piledriver CPU and APUs include FX-series with codename Vishera (FX-8350, FX-8370), A-series with codename Trinity (A6-5400K, A10-5800K) and A-series with codename Richland.

Server piledriver CPUs include Opterons with codenames Delhi (Opteron 3300-series, AM3+), Seoul (Opteron 4300-series, C32) and Abu Dhabi (Opteron 6300-series, G34). A full listing of Opteron models is available here.

Piledriver adds several new instructions over bulldozer, so AMD bulldozer systems cannot run amd64-piledriver-optimized stages. However, this subarch is instruction-compatible with its successor, the, so amd64-piledriver stages can run on amd64-steamroller systems, and vice versa.

amd64-steamroller

CFLAGS: -march=bdver3 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 sse4 3dnow 3dnowext

AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, TBM, F16C, FMA, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.

The amd64-steamroller subarch supports the AMD steamroller microarchitecture, produced from early 2014. It is the successor to the AMD Piledriver microarchitecture. Steamroller APUs are available that use the FM2+ socket and FP3 socket (mobile.)

Desktop steamroller APUs include the A-Series with codename Kaveri, such as the quad-core AMD A10-7850K APU. Steamroller APUs are also available in mobile versions. Server steamroller APUs will include the codename Berlin APUs, which are expected to be released some time in 2015.

Amd64-steamroller subarches are instruction-compatible with amd64-piledriver, but add new instructions over amd64-bulldozer.

amd64-jaguar

The amd64-jaguar (also called AMD Family 16h) subarch supports the AMD jaguar microarchitecture, which is targeted at low-power devices, including notebooks, tablets and small form-factor desktops and servers. It is perhaps most well-known for being the microarchitecture used for the Playstation 4 and Xbox One, which each use custom 8-core Jaguar APUs. Socketed Jaguar APUs use the AM1 socket, and FT3 socket for mobile devices. G-series "system on a chip" (SoC) APUs are available for non-socketed devices such as tablets and embedded system boards.

Desktop Jaguar APUs include the Kabini A-series APUs and Temash E-series APUs, such as the Athlon 5150 and 5350 APUs, and Sempron 2650 and 3850.

Amd64-jaguar subarches use the MOVBE instruction which is not available on amd64-bulldozer, amd64-piledriver or amd64-steamroller. They are thus not instruction-compatible with any of these subarches.

64-bit Intel Processors

corei7

CFLAGS: -march=corei7 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 ssse3 sse4

Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2 instruction set support.

Introduced November of 2008, the corei7 subarch supports the Nehalem microarchitecture, Sandy Bridge microarchitecture, Ivy Bridge microarchitecture, and Haswell microarchitecture.

core2_64

CFLAGS: -march=core2 -O2 -pipe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3 ssse3

Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support.

The core2_64 subarch supports 64-bit-capable Intel Core 2 Processors, which includes some processors of the Core and all processors of the Penryn microarchitecture. All "Core 2" branded processors are 64-bit-capable. These processors were introduced in July of 2006 and were phased out in July of 2011, in favor of Nehalem-based processors.

For a full list of 64-bit capable Core 2 processors, see this link.

The 64-bit capable Core 2-branded CPUs include: "Conroe"/"Allendale" (dual-core for desktops), "Merom" (dual-core for laptops), "Merom-L" (single-core for laptops), "Kentsfield" (quad-core for desktops), and the updated variants named "Wolfdale" (dual-core for desktops), "Penryn" (dual-core for laptops), and "Yorkfield" (quad-core for desktops). (Note: For the server and workstation "Woodcrest", "Tigerton", "Harpertown" and "Dunnington" CPUs see the Xeon brand.)

atom_64

CFLAGS: -O2 -fomit-frame-pointer -march=atom -pipe -mno-movbe
CHOST: x86_64-pc-linux-gnu
USE: mmx sse sse2 sse3

Intel Atom CPU with 64-bit extensions MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support.

The Intel Atom Processor is the common name for Intel's Bonnell microarchitecture, which represents a partial revival of the principles used in earlier Intel designs such as P5 and the i486, with the sole purpose of enhancing the performance per watt ratio. Successor to the Intel A100 series (Stealey), which was derived from the Pentium M, the Intel Atom has been produced since 2008. Targeted at low-power devices, Atom processors can be found in a wide range of notebooks, tablets and small form-factor desktops and servers.

The atom_64 sub-architecture supports 64-bit capable Intel Atom CPUs. The first 64-bit capable Intel Atom CPUs were the Intel Atom 230 and 330, released in late 2008. However, Intel also continued to produce new 32-bit Atom Processors after this date. For example, the Atom N2xx series Atom Diamondville models cannot support 64-bit operation, while the 2xx and 3xx Diamondville, Pineview, Cedarview and Centerton can. A full list of 64-bit capable Intel Atom Processors can be seen here.

   Important

For 64-bit support to be functional, a 64-bit capable Atom Processor must be paired with a processor, chipset, and BIOS that all support Intel 64. If not all hardware supports 64-bit, then you must use the atom_32 subarch instead.

32-bit Suport (Generic)

generic_32

32-bit AMD Processors

amd64-k8_32

athlon-xp

32-bit ARM Processors

armv5te

armv6j_hardfp

armv7a_hardfp

32-bit Intel Processors

atom_32

core2_32

i686

pentium4