Difference between pages "Install/BootLoader" and "Install/ru/Partitioning"

< Install(Difference between pages)
(Installing GRUB)
 
(Введение)
 
Line 1: Line 1:
 
<noinclude>
 
<noinclude>
{{InstallPart|boot loader configuration}}
+
{{InstallPart|процесс разбиения диска и создания файловых систем}}
 
</noinclude>
 
</noinclude>
=== Installing a Bootloader ===
+
=== Подготовка жесткого диска ===
  
These install instructions show you how to use GRUB to boot using BIOS (old-school) or UEFI (new-school).
+
В этой части  мы научимся различным способам установки Funtoo Linux -- и загрузки с -- жесткого диска.
  
==== Old School (BIOS) ====
+
==== Введение ====
  
If you're using the BIOS to boot, setting up GRUB, the bootloader, is pretty easy.
+
В прежние времена существовал лишь один способ загрузить PC-совместимый компьютер. Все наши дектопы и сервера имели стандартный PC BIOS, все наши харды использовали MBR и были разбиты используя схему разбивки MBR. Вот как это все было и нам это нравилось!
  
To use this recommended boot method, first emerge <code>boot-update</code>. This will also cause <code>grub-2</code> to be merged, since it is a dependency of <code>boot-update</code>.
+
Затем появились EFI и UEFI,  встроенные программы нового образца наряду со схемой разбивки GPT, поддерживающая диски размером более 2.2TБ. Неожиданно, нам стали доступны различные способы установки и загрузки Линукс систем . То, что было единым методом, стало чем-то более сложным.
 +
 
 +
Воспользуемся моментом и рассмотрим доступные способы конфигурации жесткого диска для загрузки Funtoo Linux. Данное Руководство рекомендует способ "по-старинке" , загрузка BIOS и использование MBR.  Данный способ работает (за исключением редких случаев) и всесторонне поддерживается. И в этом нет ничего плохого. Если Ваш жесткий диск 2TБ или меньшего размера это не является препятствием для использования всего дискового пространства.
 +
 
 +
Но, бывают ситуации когда метод "по-старинке"  не является оптимальным. Если Ваш жесткий диск размером более 2TБ , MBR разбивка не сможет обеспечить доступ ко всему дисковому пространству.  Это одна из причин.  Вторая причина: существуют  "PC" системы, которые более не поддерживают  BIOS загрузку  и  форсируют UEFI загрузку. So, out of compassion for people who fall into this predicament, this Install Guide documents UEFI booting too.
 +
 
 +
Our recommendation is still to go old-school unless you have reason not to. The boot loader we will be using to load the Linux kernel in this guide is called GRUB, so we call this method the '''BIOS + GRUB (MBR)''' method. It's the traditional method of setting up a PC-compatible system to boot Linux.
 +
 
 +
If you need to use UEFI to boot, we recommend not using the MBR at all for booting, as some systems support this, but others don't. Instead, we recommend using UEFI to boot GRUB, which in turn will load Linux. We refer to this method as the '''UEFI + GRUB (GPT)''' method.
 +
 
 +
And yes, there are even more methods, some of which are documented on the [[Boot Methods]] page. We used to recommend a '''BIOS + GRUB (GPT)''' method but it is not consistently supported across a wide variety of hardware.
 +
 
 +
'''The big question is -- which boot method should you use?''' Here's how to tell.
 +
 
 +
;Principle 1 - Old School: If you can reliably boot System Rescue CD and it shows you an initial light blue menu, you are booting the CD using the BIOS, and it's likely that you can thus boot Funtoo Linux using the BIOS. So, go old-school and use BIOS booting, ''unless'' you have some reason to use UEFI, such as having a >2.2TB system disk. In that case, see Principle 2, as your system may also support UEFI booting.
 +
 
 +
;Principle 2 - New School: If you can reliably boot System Rescue CD and it shows you an initial black and white menu -- congratulations, your system is configured to support UEFI booting. This means that you are ready to install Funtoo Linux to boot via UEFI. Your system may still support BIOS booting, but just be trying UEFI first. You can poke around in your BIOS boot configuration and play with this.
 +
 
 +
;What's the Big Difference between Old School and New School?: Here's the deal. If you go with old-school MBR partitions, your <code>/boot</code> partition will be an ext2 filesystem, and you'll use <code>fdisk</code> to create your MBR partitions. If you go with new-school GPT partitions and UEFI booting, your <code>/boot</code> partition will be a vfat filesystem, because this is what UEFI is able to read, and you will use <code>gdisk</code> to create your GPT partitions. And you'll install GRUB a bit differently. That's about all it comes down to, in case you were curious.
 +
 
 +
;Also Note: To install Funtoo Linux to boot via the New School UEFI method, you must boot System Rescue CD using UEFI -- and see an initial black and white screen. Otherwise, UEFI will not be active and you will not be able to set it up!
 +
 
 +
{{Note|'''Some motherboards may appear to support UEFI, but don't.''' Do your research. For example, the Award BIOS in my Gigabyte GA-990FXA-UD7 rev 1.1 has an option to enable UEFI boot for CD/DVD. '''This is not sufficient for enabling UEFI boot for hard drives and installing Funtoo Linux.''' UEFI must be supported for both removable media (so you can boot System Rescue CD using UEFI) as well as fixed media (so you can boot your new Funtoo Linux installation.) It turns out that later revisions of this board (rev 3.0) have a new BIOS that fully supports UEFI boot.  This may point to a third principle -- know thy hardware.}}
 +
 
 +
==== Old-School (BIOS/MBR) Method ====
 +
 
 +
{{Note|Use this method if you are booting using your BIOS, and if your System Rescue CD initial boot menu was light blue. If you're going to use the new-school method, [[#New-School (UEFI/GPT) Method|click here to jump down to UEFI/GPT.]]}}
 +
 
 +
===== Preparation =====
 +
 
 +
First, it's a good idea to make sure that you've found the correct hard disk to partition. Try this command and verify that <code>/dev/sda</code> is the disk that you want to partition:
  
 
<console>
 
<console>
(chroot) # ##i##emerge boot-update
+
# ##i##fdisk -l /dev/sda
 +
 
 +
Disk /dev/sda: 640.1 GB, 640135028736 bytes, 1250263728 sectors
 +
Units = sectors of 1 * 512 = 512 bytes
 +
Sector size (logical/physical): 512 bytes / 512 bytes
 +
I/O size (minimum/optimal): 512 bytes / 512 bytes
 +
Disk label type: gpt
 +
 
 +
 
 +
#        Start          End    Size  Type            Name
 +
1        2048  1250263694  596.2G  Linux filesyste Linux filesystem
 
</console>
 
</console>
  
Then, edit <code>/etc/boot.conf</code> and specify "<code>Funtoo Linux genkernel</code>" as the <code>default</code> setting at the top of the file, replacing <code>"Funtoo Linux"</code>.  
+
Now, it's recommended that you erase any existing MBR or GPT partition tables on the disk, which could confuse the system's BIOS at boot time. We do this using <code>sgdisk</code>:
 +
{{fancywarning|This will make any existing partitions inaccessible! You are '''strongly''' cautioned and advised to backup any critical data before proceeding.}}
  
<code>/etc/boot.conf</code> should now look like this:
+
<console>
 +
# ##i##sgdisk --zap-all /dev/sda
  
<pre>
+
Creating new GPT entries.
boot {
+
GPT data structures destroyed! You may now partition the disk using fdisk or
generate grub
+
other utilities.
default "Funtoo Linux genkernel"
+
</console>
timeout 3
+
}
+
  
"Funtoo Linux" {
+
This output is also nothing to worry about, as the command still succeded:
kernel bzImage[-v]
+
}
+
  
"Funtoo Linux genkernel" {
+
<console>
kernel kernel[-v]
+
***************************************************************
initrd initramfs[-v]
+
Found invalid GPT and valid MBR; converting MBR to GPT format
params += real_root=auto
+
in memory.
}
+
***************************************************************
 +
</console>
  
"Funtoo Linux better-initramfs" {
+
===== Partitioning =====
kernel vmlinuz[-v]
+
initrd /initramfs.cpio.gz
+
}
+
</pre>
+
  
Please read <code>man boot.conf</code> for further details.
+
Now we will use <code>fdisk</code> to create the MBR partition table and partitions:
 +
 
 +
<console>
 +
# ##i##fdisk /dev/sda
 +
</console>
  
===== Running grub-install and boot-update =====
+
Within <code>fdisk</code>, follow these steps:
  
Finally, we will need to actually install the GRUB boot loader to your disk, and also run <code>boot-update</code> which will generate your boot loader configuration file:
+
'''Empty the partition table''':
  
 
<console>
 
<console>
(chroot) # ##i##grub-install --no-floppy /dev/sda
+
Command (m for help): ##i##o ↵
(chroot) # ##i##boot-update
+
 
</console>
 
</console>
  
Now you need to update your boot loader configuration file:
+
'''Create Partition 1''' (boot):
 +
 
 
<console>
 
<console>
(chroot) # ##i##boot-update
+
Command (m for help): ##i##n ↵
 +
Partition type (default p): ##i##
 +
Partition number (1-4, default 1): ##i##↵
 +
First sector: ##i##↵
 +
Last sector: ##i##+128M ↵
 
</console>
 
</console>
You only need to run <code>grub-install</code> when you first install Funtoo Linux, but you need to re-run <code>boot-update</code> every time you modify your <code>/etc/boot.conf</code> file, so your changes are applied on next boot.
 
  
==== New School (UEFI) ====
+
'''Create Partition 2''' (swap):
  
If you're using UEFI to boot, setting up the boot loader is a bit more complicated for now, but this process will be improving soon. Perform the following steps.
+
<console>
 +
Command (m for help): ##i##n ↵
 +
Partition type (default p): ##i##↵
 +
Partition number (2-4, default 2): ##i##↵
 +
First sector: ##i##↵
 +
Last sector: ##i##+2G ↵
 +
Command (m for help): ##i##t ↵
 +
Partition number (1,2, default 2): ##i## ↵
 +
Hex code (type L to list all codes): ##i##82 ↵
 +
</console>
  
===== Emerging GRUB =====
+
'''Create the root partition:'''
  
You will still use GRUB as a boot loader, but before emerging grub, you will need to enable EFI booting. To do this,  
+
<console>
add the following line to <code>/etc/make.conf</code>:
+
Command (m for help): ##i##n ↵
 +
Partition type (default p): ##i##↵
 +
Partition number (3,4, default 3): ##i##↵
 +
First sector: ##i##↵
 +
Last sector: ##i##↵
 +
</console>
  
<pre>
+
'''Verify the partition table:'''
  
For 64-bit systems:
+
<console>
 +
Command (m for help): ##i##p
  
GRUB_PLATFORMS="efi-64"
+
Disk /dev/sda: 298.1 GiB, 320072933376 bytes, 625142448 sectors
 +
Units: sectors of 1 * 512 = 512 bytes
 +
Sector size (logical/physical): 512 bytes / 512 bytes
 +
I/O size (minimum/optimal): 512 bytes / 512 bytes
 +
Disklabel type: dos
 +
Disk identifier: 0x82abc9a6
  
For 32-bit systems, i.e. Intel Atom devices and systems with less than 4GB of RAM:
+
Device    Boot    Start      End    Blocks  Id System
 +
/dev/sda1          2048    264191    131072  83 Linux
 +
/dev/sda2        264192  4458495  2097152  82 Linux swap / Solaris
 +
/dev/sda3        4458496 625142447 310341976  83 Linux
 +
</console>
  
GRUB_PLATFORMS="efi-32"
+
'''Write the parition table to disk:'''
  
</pre>
+
<console>
 +
Command (m for help): ##i##w
 +
</console>
 +
 
 +
Your new MBR partition table will now be written to your system disk.
 +
 
 +
{{Note|You're done with partitioning! Now, jump over to [[#Creating filesystems|Creating filesystems]].}}
 +
 
 +
==== New-School (UEFI/GPT) Method ====
 +
 
 +
{{Note|Use this method if you are booting using UEFI, and if your System Rescue CD initial boot menu was black and white. If it was light blue, this method will not work.}}
  
Then, <code>emerge boot-update</code>. You will notice <code>grub</code> and <code>efibootmgr</code> getting pulled in as dependencies. This is expected and good:
+
The <tt>gdisk</tt> commands to create a GPT partition table are as follows. Adapt sizes as necessary, although these defaults will work for most users. Start <code>gdisk</code>:
  
 
<console>
 
<console>
(chroot) # ##i##emerge boot-update
+
# ##i##gdisk
 
</console>
 
</console>
  
===== Installing GRUB =====
+
Within <tt>gdisk</tt>, follow these steps:
  
Now, for the magic of getting everything in place for booting. You should copy your kernel and initramfs (if you have one -- you will if you are following the default install) to <tt>/boot</tt>. GRUB will boot those. But how do we get UEFI to boot GRUB? Well, we need to run the following command (for 32 bit simply set it as i386-efi):
+
'''Create a new empty partition table''' (This ''will'' erase all data on the disk when saved):
  
 
<console>
 
<console>
(chroot) # ##i##grub-install --target=x86_64-efi --efi-directory=/boot --bootloader-id="Funtoo Linux [GRUB]" --recheck /dev/sda
+
Command: ##i##o ↵
 +
This option deletes all partitions and creates a new protective MBR.
 +
Proceed? (Y/N): ##i##y ↵
 
</console>
 
</console>
This command will simply install all the stuff to <tt>/boot/EFI</tt> and <tt>/boot/grub</tt> that your system needs to boot. In particular, the <tt>/boot/EFI/grub/grubx64.efi</tt> file will be created. This is the GRUB boot image that UEFI will load and start.
 
  
A more detailed explanation of the flags used in the above command:
+
'''Create Partition 1''' (boot):
* <code>--target=x86_64-efi</code>: Tells GRUB that we want to install it in a way that allows it to boot in UEFI
+
* <code>--efi-directory=/boot</code>: All GRUB UEFI files will be installed in ''/boot''
+
* <code>--bootloader-id="Funtoo Linux [GRUB]"</code>: This flag is not necessary for GRUB to boot. However, it allows you to change the text of the boot option in the UEFI BIOS. The stuff in the quotes can be set to anything that you would like.
+
* <code>--recheck</code>: If a device map already exists on the disk or partition that GRUB is being installed on, it will be removed.
+
* <code>/dev/sda</code>:The device that we are installing GRUB on.
+
  
===== Configuring GRUB =====
+
<console>
 +
Command: ##i##n ↵
 +
Partition Number: ##i##1 ↵
 +
First sector: ##i##↵
 +
Last sector: ##i##+500M ↵
 +
Hex Code: ##i##↵
 +
</console>
  
OK, now UEFI has the GRUB image it needs to boot. But we still need to configure GRUB itself so it finds and boots your kernel and initramfs. This is done by performing the following steps. Since boot-update doesn't yet support UEFI, we will use boot-update, but then edit our <code>/boot/grub/grub.cfg</code> to support UEFI booting.
+
'''Create Partition 2''' (swap):
  
First, you will need to edit <code>/etc/boot.conf</code>. Format this as you would if you were booting without UEFI. If you are not sure how this should look, below is an example of what it could look like if you are booting from an unencrypted ext4 partition:
+
<console>
 +
Command: ##i##n ↵
 +
Partition Number: ##i##2 ↵
 +
First sector: ##i##↵
 +
Last sector: ##i##+4G ↵
 +
Hex Code: ##i##8200 ↵
 +
</console>
  
{{file|name=/etc/boot.conf|desc=|body=
+
'''Create Partition 3''' (root):
boot {
+
        generate grub
+
        default "Funtoo Linux"
+
        timeout 3
+
}
+
  
"Funtoo Linux" {
+
<console>
        kernel vmlinuz[-v]
+
Command: ##i##n ↵
        params += rootfstype=ext4 root=/dev/sda2
+
Partition Number: ##i##3 ↵
}
+
First sector: ##i##↵
}}
+
Last sector: ##i##↵##!i## (for rest of disk)
 +
Hex Code: ##i##↵
 +
</console>
 +
 
 +
Along the way, you can type "<tt>p</tt>" and hit Enter to view your current partition table. If you make a mistake, you can type "<tt>d</tt>" to delete an existing partition that you created. When you are satisfied with your partition setup, type "<tt>w</tt>" to write your configuration to disk:
  
After you have edited your <code>/etc/boot.conf</code> file, run <code>boot-update</code>. You should now have a <code>/boot/grub/grub.cfg</code> file, which you can edit using the following command:
+
'''Write Partition Table To Disk''':
  
 
<console>
 
<console>
# ##i##nano /boot/grub/grub.cfg
+
Command: ##i##w ↵
 +
Do you want to proceed? (Y/N): ##i##Y ↵
 
</console>
 
</console>
  
 +
The partition table will now be written to disk and <tt>gdisk</tt> will close.
  
To get your <code>/boot/grub/grub.cfg</code> to support booting with UEFI, make the following changes. Below the existing insmod lines, add the following lines.  Both of these involve adding support for the UEFI framebuffer to GRUB.:
+
Now, your GPT/GUID partitions have been created, and will show up as the following ''block devices'' under Linux:
  
<pre>
+
* <tt>/dev/sda1</tt>, which will be used to hold the <tt>/boot</tt> filesystem,
  insmod efi_gop
+
* <tt>/dev/sda2</tt>, which will be used for swap space, and
  insmod efi_uga
+
* <tt>/dev/sda3</tt>, which will hold your root filesystem.
</pre>
+
  
Then, change the <code>set gfxpayload</code> line to read as follows. UEFI does not support text mode, so we will keep video initialized to the current resolution.:
+
==== Creating filesystems ====
  
<pre>
+
{{Note|This section covers both BIOS ''and'' UEFI installs. Don't skip it!}}
  set gfxpayload=keep
+
</pre>
+
  
You can now save your changes by pressing <code>Control-X</code> and answering <code>y</code> when asked if you want to save the modified buffer. When prompted for a filename, hit Enter to use the existing filename.
+
Before your newly-created partitions can be used, the block devices need to be initialized with filesystem ''metadata''. This process is known as ''creating a filesystem'' on the block devices. After filesystems are created on the block devices, they can be mounted and used to store files.
 +
 
 +
Let's keep this simple. Are you using old-school MBR partitions? If so, let's create an ext2 filesystem on /dev/sda1:
 +
 
 +
<console>
 +
# ##i##mkfs.ext2 /dev/sda1
 +
</console>
 +
 
 +
If you're using new-school GPT partitions for UEFI, you'll want to create a vfat filesystem on /dev/sda1, because this is what UEFI is able to read:
 +
 
 +
<console>
 +
# ##i##mkfs.vfat -F 32 /dev/sda1
 +
</console>
 +
 
 +
Now, let's create a swap partition. This partition will be used as disk-based virtual memory for your Funtoo Linux system.
 +
 
 +
You will not create a filesystem on your swap partition, since it is not used to store files. But it is necessary to initialize it using the <code>mkswap</code> command. Then we'll run the <code>swapon</code> command to make your newly-initialized swap space immediately active within the live CD environment, in case it is needed during the rest of the install process:
 +
 
 +
<console>
 +
# ##i##mkswap /dev/sda2
 +
# ##i##swapon /dev/sda2
 +
</console>
 +
 
 +
Now, we need to create a root filesystem. This is where Funtoo Linux will live. We generally recommend ext4 or XFS root filesystems. If you're not sure, choose ext4. Here's how to create a root ext4 filesystem:
 +
 
 +
<console>
 +
# ##i##mkfs.ext4 /dev/sda3
 +
</console>
 +
 
 +
...and here's how to create an XFS root filesystem, if you choose to use XFS:
 +
 
 +
<console>
 +
# ##i##mkfs.xfs /dev/sda3
 +
</console>
 +
 
 +
Your filesystems (and swap) have all now been initialized, so that that can be mounted (attached to your existing directory heirarchy) and used to store files. We are ready to begin installing Funtoo Linux on these brand-new filesystems.
 +
 
 +
{{fancywarning|1=
 +
When deploying an OpenVZ host, please use ext4 exclusively. The Parallels development team tests extensively with ext4, and modern versions of <code>openvz-rhel6-stable</code> are '''not''' compatible with XFS, and you may experience kernel bugs.
 +
}}
 +
 
 +
==== Mounting filesystems ====
 +
 
 +
Mount the newly-created filesystems as follows, creating <code>/mnt/funtoo</code> as the installation mount point:
 +
 
 +
<console>
 +
# ##i##mkdir /mnt/funtoo
 +
# ##i##mount /dev/sda3 /mnt/funtoo
 +
# ##i##mkdir /mnt/funtoo/boot
 +
# ##i##mount /dev/sda1 /mnt/funtoo/boot
 +
</console>
 +
 
 +
Optionally, if you have a separate filesystem for <code>/home</code> or anything else:
 +
 
 +
<console>
 +
# ##i##mkdir /mnt/funtoo/home
 +
# ##i##mount /dev/sda4 /mnt/funtoo/home
 +
</console>
 +
 
 +
If you have <code>/tmp</code> or <code>/var/tmp</code> on a separate filesystem, be sure to change the permissions of the mount point to be globally-writeable after mounting, as follows:
 +
 
 +
<console>
 +
# ##i##chmod 1777 /mnt/funtoo/tmp
 +
</console>

Revision as of 18:37, January 5, 2015


Note

This is a template that is used as part of the Installation instructions which covers: процесс разбиения диска и создания файловых систем. Templates are being used to allow multiple variant install guides that use most of the same re-usable parts.


Подготовка жесткого диска

В этой части мы научимся различным способам установки Funtoo Linux -- и загрузки с -- жесткого диска.

Введение

В прежние времена существовал лишь один способ загрузить PC-совместимый компьютер. Все наши дектопы и сервера имели стандартный PC BIOS, все наши харды использовали MBR и были разбиты используя схему разбивки MBR. Вот как это все было и нам это нравилось!

Затем появились EFI и UEFI, встроенные программы нового образца наряду со схемой разбивки GPT, поддерживающая диски размером более 2.2TБ. Неожиданно, нам стали доступны различные способы установки и загрузки Линукс систем . То, что было единым методом, стало чем-то более сложным.

Воспользуемся моментом и рассмотрим доступные способы конфигурации жесткого диска для загрузки Funtoo Linux. Данное Руководство рекомендует способ "по-старинке" , загрузка BIOS и использование MBR. Данный способ работает (за исключением редких случаев) и всесторонне поддерживается. И в этом нет ничего плохого. Если Ваш жесткий диск 2TБ или меньшего размера это не является препятствием для использования всего дискового пространства.

Но, бывают ситуации когда метод "по-старинке" не является оптимальным. Если Ваш жесткий диск размером более 2TБ , MBR разбивка не сможет обеспечить доступ ко всему дисковому пространству. Это одна из причин. Вторая причина: существуют "PC" системы, которые более не поддерживают BIOS загрузку и форсируют UEFI загрузку. So, out of compassion for people who fall into this predicament, this Install Guide documents UEFI booting too.

Our recommendation is still to go old-school unless you have reason not to. The boot loader we will be using to load the Linux kernel in this guide is called GRUB, so we call this method the BIOS + GRUB (MBR) method. It's the traditional method of setting up a PC-compatible system to boot Linux.

If you need to use UEFI to boot, we recommend not using the MBR at all for booting, as some systems support this, but others don't. Instead, we recommend using UEFI to boot GRUB, which in turn will load Linux. We refer to this method as the UEFI + GRUB (GPT) method.

And yes, there are even more methods, some of which are documented on the Boot Methods page. We used to recommend a BIOS + GRUB (GPT) method but it is not consistently supported across a wide variety of hardware.

The big question is -- which boot method should you use? Here's how to tell.

Principle 1 - Old School
If you can reliably boot System Rescue CD and it shows you an initial light blue menu, you are booting the CD using the BIOS, and it's likely that you can thus boot Funtoo Linux using the BIOS. So, go old-school and use BIOS booting, unless you have some reason to use UEFI, such as having a >2.2TB system disk. In that case, see Principle 2, as your system may also support UEFI booting.
Principle 2 - New School
If you can reliably boot System Rescue CD and it shows you an initial black and white menu -- congratulations, your system is configured to support UEFI booting. This means that you are ready to install Funtoo Linux to boot via UEFI. Your system may still support BIOS booting, but just be trying UEFI first. You can poke around in your BIOS boot configuration and play with this.
What's the Big Difference between Old School and New School?
Here's the deal. If you go with old-school MBR partitions, your /boot partition will be an ext2 filesystem, and you'll use fdisk to create your MBR partitions. If you go with new-school GPT partitions and UEFI booting, your /boot partition will be a vfat filesystem, because this is what UEFI is able to read, and you will use gdisk to create your GPT partitions. And you'll install GRUB a bit differently. That's about all it comes down to, in case you were curious.
Also Note
To install Funtoo Linux to boot via the New School UEFI method, you must boot System Rescue CD using UEFI -- and see an initial black and white screen. Otherwise, UEFI will not be active and you will not be able to set it up!
Note

Some motherboards may appear to support UEFI, but don't. Do your research. For example, the Award BIOS in my Gigabyte GA-990FXA-UD7 rev 1.1 has an option to enable UEFI boot for CD/DVD. This is not sufficient for enabling UEFI boot for hard drives and installing Funtoo Linux. UEFI must be supported for both removable media (so you can boot System Rescue CD using UEFI) as well as fixed media (so you can boot your new Funtoo Linux installation.) It turns out that later revisions of this board (rev 3.0) have a new BIOS that fully supports UEFI boot. This may point to a third principle -- know thy hardware.

Old-School (BIOS/MBR) Method

Note

Use this method if you are booting using your BIOS, and if your System Rescue CD initial boot menu was light blue. If you're going to use the new-school method, click here to jump down to UEFI/GPT.

Preparation

First, it's a good idea to make sure that you've found the correct hard disk to partition. Try this command and verify that /dev/sda is the disk that you want to partition:

# fdisk -l /dev/sda

Disk /dev/sda: 640.1 GB, 640135028736 bytes, 1250263728 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk label type: gpt


#         Start          End    Size  Type            Name
 1         2048   1250263694  596.2G  Linux filesyste Linux filesystem

Now, it's recommended that you erase any existing MBR or GPT partition tables on the disk, which could confuse the system's BIOS at boot time. We do this using sgdisk:

Warning

This will make any existing partitions inaccessible! You are strongly cautioned and advised to backup any critical data before proceeding.

# sgdisk --zap-all /dev/sda

Creating new GPT entries.
GPT data structures destroyed! You may now partition the disk using fdisk or
other utilities.

This output is also nothing to worry about, as the command still succeded:

***************************************************************
Found invalid GPT and valid MBR; converting MBR to GPT format
in memory. 
***************************************************************
Partitioning

Now we will use fdisk to create the MBR partition table and partitions:

# fdisk /dev/sda

Within fdisk, follow these steps:

Empty the partition table:

Command (m for help): o ↵

Create Partition 1 (boot):

Command (m for help): n ↵
Partition type (default p): 
Partition number (1-4, default 1): 
First sector: 
Last sector: +128M ↵

Create Partition 2 (swap):

Command (m for help): n ↵
Partition type (default p): 
Partition number (2-4, default 2): 
First sector: 
Last sector: +2G ↵
Command (m for help): t ↵ 
Partition number (1,2, default 2): 
Hex code (type L to list all codes): 82 ↵

Create the root partition:

Command (m for help): n ↵
Partition type (default p): 
Partition number (3,4, default 3): 
First sector: 
Last sector: 

Verify the partition table:

Command (m for help): p

Disk /dev/sda: 298.1 GiB, 320072933376 bytes, 625142448 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x82abc9a6

Device    Boot     Start       End    Blocks  Id System
/dev/sda1           2048    264191    131072  83 Linux
/dev/sda2         264192   4458495   2097152  82 Linux swap / Solaris
/dev/sda3        4458496 625142447 310341976  83 Linux

Write the parition table to disk:

Command (m for help): w

Your new MBR partition table will now be written to your system disk.

Note

You're done with partitioning! Now, jump over to Creating filesystems.

New-School (UEFI/GPT) Method

Note

Use this method if you are booting using UEFI, and if your System Rescue CD initial boot menu was black and white. If it was light blue, this method will not work.

The gdisk commands to create a GPT partition table are as follows. Adapt sizes as necessary, although these defaults will work for most users. Start gdisk:

# gdisk

Within gdisk, follow these steps:

Create a new empty partition table (This will erase all data on the disk when saved):

Command: o ↵
This option deletes all partitions and creates a new protective MBR.
Proceed? (Y/N): y ↵

Create Partition 1 (boot):

Command: n ↵
Partition Number: 1 ↵
First sector: 
Last sector: +500M ↵
Hex Code: 

Create Partition 2 (swap):

Command: n ↵
Partition Number: 2 ↵
First sector: 
Last sector: +4G ↵
Hex Code: 8200 ↵

Create Partition 3 (root):

Command: n ↵
Partition Number: 3 ↵
First sector: 
Last sector:  (for rest of disk)
Hex Code: 

Along the way, you can type "p" and hit Enter to view your current partition table. If you make a mistake, you can type "d" to delete an existing partition that you created. When you are satisfied with your partition setup, type "w" to write your configuration to disk:

Write Partition Table To Disk:

Command: w ↵
Do you want to proceed? (Y/N): Y ↵

The partition table will now be written to disk and gdisk will close.

Now, your GPT/GUID partitions have been created, and will show up as the following block devices under Linux:

  • /dev/sda1, which will be used to hold the /boot filesystem,
  • /dev/sda2, which will be used for swap space, and
  • /dev/sda3, which will hold your root filesystem.

Creating filesystems

Note

This section covers both BIOS and UEFI installs. Don't skip it!

Before your newly-created partitions can be used, the block devices need to be initialized with filesystem metadata. This process is known as creating a filesystem on the block devices. After filesystems are created on the block devices, they can be mounted and used to store files.

Let's keep this simple. Are you using old-school MBR partitions? If so, let's create an ext2 filesystem on /dev/sda1:

# mkfs.ext2 /dev/sda1

If you're using new-school GPT partitions for UEFI, you'll want to create a vfat filesystem on /dev/sda1, because this is what UEFI is able to read:

# mkfs.vfat -F 32 /dev/sda1

Now, let's create a swap partition. This partition will be used as disk-based virtual memory for your Funtoo Linux system.

You will not create a filesystem on your swap partition, since it is not used to store files. But it is necessary to initialize it using the mkswap command. Then we'll run the swapon command to make your newly-initialized swap space immediately active within the live CD environment, in case it is needed during the rest of the install process:

# mkswap /dev/sda2
# swapon /dev/sda2

Now, we need to create a root filesystem. This is where Funtoo Linux will live. We generally recommend ext4 or XFS root filesystems. If you're not sure, choose ext4. Here's how to create a root ext4 filesystem:

# mkfs.ext4 /dev/sda3

...and here's how to create an XFS root filesystem, if you choose to use XFS:

# mkfs.xfs /dev/sda3

Your filesystems (and swap) have all now been initialized, so that that can be mounted (attached to your existing directory heirarchy) and used to store files. We are ready to begin installing Funtoo Linux on these brand-new filesystems.

Warning

When deploying an OpenVZ host, please use ext4 exclusively. The Parallels development team tests extensively with ext4, and modern versions of openvz-rhel6-stable are not compatible with XFS, and you may experience kernel bugs.

Mounting filesystems

Mount the newly-created filesystems as follows, creating /mnt/funtoo as the installation mount point:

# mkdir /mnt/funtoo
# mount /dev/sda3 /mnt/funtoo
# mkdir /mnt/funtoo/boot
# mount /dev/sda1 /mnt/funtoo/boot

Optionally, if you have a separate filesystem for /home or anything else:

# mkdir /mnt/funtoo/home
# mount /dev/sda4 /mnt/funtoo/home

If you have /tmp or /var/tmp on a separate filesystem, be sure to change the permissions of the mount point to be globally-writeable after mounting, as follows:

# chmod 1777 /mnt/funtoo/tmp