Difference between revisions of "ZFS as Root Filesystem"

From Funtoo
Jump to navigation Jump to search
(Update Youtube video)
 
 
(362 intermediate revisions by 17 users not shown)
Line 1: Line 1:
{{warning|This page is unofficial. ZFS as root filesystem is not supported under Funtoo Linux, mainly because it has limited benefit. ZFS is still supported but boot on a non-ZFS filesystem first. See [[ZFS]].}}
== Introduction ==
== Introduction ==


This tutorial will show you how to install Funtoo on ZFS (rootfs). This tutorial is meant to be an "overlay" over the [[Funtoo_Linux_Installation|Regular Funtoo Installation]]. Follow the normal installation and only use this guide for steps 2, 3, and 8.
This wiki article will show you how to install Funtoo on ZFS (rootfs).


=== Introduction to ZFS ===
== Prerequisites ==


Since ZFS is a new technology for Linux, it can be helpful to understand some of its benefits, particularly in comparison to BTRFS, another popular next-generation Linux filesystem:
{{fancyimportant|''ZFS is designed for 64-bit systems. We only recommend and support 64-bit platforms and installations!''}}
{{fancywarning|''ZFS v07.5 (latest in ports as of 18 Jan 2018) is compatible with kernel versions 2.6.32 - 4.14''}}
{{fancywarning|''The guide is under rewrite''}}
It is recommended to give the entire disk to ZFS. As such, this guide will only show how to install ZFS on the whole disk, using legacy boot. Installing on UEFI requires a separate partition for /boot, formatted as FAT32, and is out of the scope of this guide, even though installation on UEFI is certainly possible. Also, this guide will not cover anything related to encryption (native encryption is available: https://github.com/zfsonlinux/zfs/commit/b52563034230b35f0562b6f40ad1a00f02bd9a05).


* On Linux, the ZFS code can be updated independently of the kernel to obtain the latest fixes. btrfs is exclusive to Linux and you need to build the latest kernel sources to get the latest fixes.
=== Downloading the ISO (With ZFS) ===
In order to install Funtoo on ZFS, you will need an environment, such as live media, that provides the ZFS tools. This guide will utilize the Ubuntu Desktop 16.04 (live) DVD for amd64.
* Download from '''[https://build.funtoo.org/distfiles/ubuntu-17.10.1-desktop-amd64.iso]'''


* ZFS is supported on multiple platforms. The platforms with the best support are Solaris, FreeBSD and Linux. Other platforms with varying degrees of support are NetBSD, Mac OS X and Windows. btrfs is exclusive to Linux.
== Creating a bootable USB from ISO (From a Linux Environment) ==
 
After you download the iso, you can do the following steps to create a bootable USB:
* ZFS has the Adaptive Replacement Cache replacement algorithm while btrfs uses the Linux kernel's Last Recently Used replacement algorithm. The former often has an overwhelmingly superior hit rate, which means fewer disk accesses.
{{note|The size of the iso is approximately 1.5 GB.}}
 
Insert your blank USB media into a USB port. Then, inspect the kernel ring buffer with {{c|dmesg}} to identify the device name of your USB storage.
* ZFS has the ZFS Intent Log and SLOG devices, which accelerates small synchronous write performance.
{{console|title=dmesg|body=
[  +5.533491] usb 6-2: new SuperSpeed USB device number 4 using xhci_hcd
[  +0.022995] usb 6-2: New USB device found, idVendor=1b1c, idProduct=1a0c
[  +0.000006] usb 6-2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[  +0.000003] usb 6-2: Product: Voyager Mini 3.0
[  +0.000003] usb 6-2: Manufacturer: Corsair
[  +0.000002] usb 6-2: SerialNumber: 0123456789ABCDEF
[  +0.001095] usb-storage 6-2:1.0: USB Mass Storage device detected
[  +0.000080] scsi host15: usb-storage 6-2:1.0
[  +1.000772] scsi 15:0:0:0: Direct-Access    Corsair  Voyager Mini 3.0 PMAP PQ: 0 ANSI: 6
[  +0.000615] sd 15:0:0:0: Attached scsi generic sg6 type 0
[  +0.000110] sd 15:0:0:0: [sdg] 60566016 512-byte logical blocks: (31.0 GB/28.9 GiB)
[  +0.000209] sd 15:0:0:0: [sdg] Write Protect is off
[  +0.000004] sd 15:0:0:0: [sdg] Mode Sense: 2b 00 00 08
[  +0.000227] sd 15:0:0:0: [sdg] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[  +0.359532] sd 15:0:0:0: [sdg] Attached SCSI removable disk
}}
In this example, {{c|[sdg]}} indicates that the device is {{c|/dev/sdg}}.


* ZFS handles internal fragmentation gracefully, such that you can fill it until 100%. Internal fragmentation in btrfs can make btrfs think it is full at 10%. Btrfs has no automatic rebalancing code, so it requires a manual rebalance to correct it.
A quick and easy way to create a bootable USB is to write the ISO data to the USB device using {{c|dd}}.
{{console|body=
###i## dd if=/path/to/iso/ubuntu-16.04-desktop-amd64.iso of=/dev/sdg bs=4K
}}


* ZFS has raidz, which is like RAID 5/6 (or a hypothetical RAID 7 that supports 3 parity disks), except it does not suffer from the RAID write hole issue thanks to its use of CoW and a variable stripe size. btrfs gained integrated RAID 5/6 functionality in Linux 3.9. However, its implementation uses a stripe cache that can only partially mitigate the effect of the RAID write hole.
Once this has completed, remove and use this USB to boot the target system that will receive Funtoo Linux.


* ZFS send/receive implementation supports incremental update when doing backups. btrfs' send/receive implementation requires sending the entire snapshot.
== Booting the ISO ==
Using legacy (BIOS) boot mode, boot the ISO and allow Ubuntu to load the graphical environment. You will be presented with a "Welcome" dialog (titled ''Install (as superuser)''). Select the option "Try Ubuntu".


* ZFS supports data deduplication, which is a memory hog and only works well for specialized workloads. btrfs has no equivalent.
Once the desktop has loaded, open the search bar by left-clicking on the top-left icon ("Search your computer"). Pressing Alt+F1 should also open this search bar. Search for and open the Terminal application.


* ZFS datasets have a hierarchical namespace while btrfs subvolumes have a flat namespace.
In the terminal, issue the following commands to install and load the required ZFS module.


* ZFS has the ability to create virtual block devices called zvols in its namespace. btrfs has no equivalent and must rely on the loop device for this functionality, which is cumbersome.
{{console|body=
ubuntu@ubuntu:~$##i## sudo -i
root@ubuntu:~###i## apt-add-repository universe
root@ubuntu:~###i## apt update
root@ubuntu:~###i## apt install --yes debootstrap gdisk zfs-initramfs
}}


The only area where btrfs is ahead of ZFS is in the area of small file
Verify that the ZFS kernel module has loaded.
efficiency. btrfs supports a feature called block suballocation, which
{{console|body=
enables it to store small files far more efficiently than ZFS. It is
root@ubuntu:~# ##i## dmesg {{!}} grep ZFS
possible to use another filesystem (e.g. reiserfs) on top of a ZFS zvol
[  377.595348] ##r##ZFS##!r##: Loaded module v0.6.5.6-0ubuntu10, ##r##ZFS##!r## pool version 5000, ##r##ZFS##!r## filesystem version 5
to obtain similar benefits (with arguably better data integrity) when
}}
dealing with many small files (e.g. the portage tree).


=== Disclaimers ===
== Drive Partitions ==
 
We are letting ZFS automatically partition the drive. This is ideal for our example using a single disk and legacy (BIOS) boot.
{{fancywarning|This guide is a work in progress. Expect some quirks.}}
{{fancyimportant|'''Since ZFS was really designed for 64 bit systems, we are only recommending and supporting 64 bit platforms and installations. We will not be supporting 32 bit platforms'''!}}
 
== Video Tutorial ==
 
As a companion to the install instructions below, a YouTube video ZFS install tutorial is now available:
 
{{#widget:YouTube|id=kxEdSXwU0ZI|width=640|height=360}}
 
{{fancyimportant|'''The video and guide are currently out of sync. The video has newer instructions. The guide needs to be updated.'''}}
 
== Downloading the ISO (With ZFS) ==
In order for us to install Funtoo on ZFS, you will need an environment that provides the ZFS tools. Therefore we will download a customized version of System Rescue CD with ZFS already included. When booting, use the "alternate"-kernel. The ZFS-module won't work with the default kernel.
 
<pre>
Name: sysresccd-4.0.1_zfs_0.6.2.iso  (545 MB)
Release Date: 2014-02-25
md5sum 01f4e6929247d54db77ab7be4d156d85
</pre>
 
 
'''[http://medd.homeip.net:3333/chinchilla/livecd/ Download System Rescue CD with ZFS]'''<br />
 
== Creating a bootable USB from ISO ==
After you download the iso, you can do the following steps to create a bootable USB:


=== Creating of pool ===
Create a ZFS Storage Pool using a single whole disk.
<console>
<console>
Make a temporary directory
root@ubuntu:~###i## zpool create -d -o feature@async_destroy=enabled -o feature@empty_bpobj=enabled -o feature@lz4_compress=enabled -o feature@spacemap_histogram=enabled -o feature@enabled_txg=enabled -o feature@extensible_dataset=enabled -o feature@bookmarks=enabled -f -o ashift=12 -o cachefile=/tmp/zpool.cache -O normalization=formD -O atime=off -O xattr=sa -O compression=lz4 -m none -R /mnt/funtoo rpool /dev/disk/by-id/foo
# ##i##mkdir /tmp/loop
 
Mount the iso
# ##i##mount -o ro,loop /root/sysresccd-4.0.0_zfs_0.6.2.iso /tmp/loop
 
Run the usb installer
# ##i##/tmp/loop/usb_inst.sh
</console>
</console>
The options used here are
{{TableStart}}
{{2ColHead|option|description}}
{{2Col|{{c|create}}|Use {{c|zpool}} to create a ZFS Storage Pool.}}
{{2Col|{{c|-d}}|Required. Disables enabling all availabe zfs features. This is needed as the GRUB bootloader currently can't handle all advanced zfs features, not specifying this flag on pool creation (or running 'zpool upgrade' on the pool at a later point in time) will make the pool incompatible with GRUB.}}
{{2Col|{{c|(multiple) -o feature@<name>{{=}}enabled}}|Explicitely enable all features currently supported by GRUB. See 'man zpool-features' for details on their effects.}}
{{2Col|{{c|-f}}|Force the use of the selected disk.}}
{{2Col|{{c|-o ashift{{=}}12}}|Alignment of the pool to underlying hard drive sectors. The recommended value is 12, which corresponds to 2^12 Bytes or 4 KiB. This value is typical for present-day HDD's. Can only be set once at pool creation.}}
{{2Col|{{c|-o cachefile{{=}}/tmp/zpool.cache}}|Create a pool configuration cache and place it in {{f|/tmp}}. This will be required for our Funtoo install.}}
{{2Col|{{c|-O normalization{{=}}formD}}|Recommended. Set the default Unicode (UTF-8) normalization for future filesystems (created within this pool) to 'formD'.}}
{{2Col|{{c|-O atime{{=}}off}}|Recommended. As a default preference, set future filesystems (created within this pool) to not update file access time. Useful if we want to reduce writes to disk (e.g., Solid State Drives). Can cause problems for mailers and other software that rely on file access-time data.}}
{{2Col|{{c|-O xattr{{=}}sa}}|Recommended. As a default preference, set future filesystems (created within this pool) to store extended file attributes in a more efficient manner.}}
{{2Col|{{c|-O compression{{=}}lz4}}|Recommended. As a default preference, set future filesystems (created within this pool) to be compressed using the lz4 algorithm. Useful in general as the runtime cost for compression is neglible on these days while on-disk space still costs money.}}
{{2Col|{{c|-m none}}|Do not set mountpoint for this storage pool. (This guide will address this later).}}
{{2Col|{{c|-R /mnt/funtoo}}|Alternate root directory. Essentially a temporary 'mount point' for our pool.}}
{{2Col|{{c|rpool}}|The name of this ZFS Storage Pool. The pool name is irrelevant. {{c|rpool}} will be used throughout this guide.}}
{{2Col|{{c|/dev/disk/by-id/foo}}|The path to the physical disk. e.g. /dev/disk/by-id/ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF. Known in 'ZFS-speak' as a 'VDEV'.}}
{{TableEnd}}
Please note that the options 'ashift' and 'cachefile' are preceded with a lowercase '-o', while 'normalization' and 'atime' are preceded with an uppercase '-O'.


That should be all you need to do to get your flash drive working.
Without additional options, this will create our storage pool and enable all 'features' available under version 0.6.5.6. The pool will be automatically mounted at the (temporary) location {{f|/mnt/funtoo}}.


When you are booting into system rescue cd, make sure you select the '''alternative 64 bit kernel'''. ZFS support was specifically added to the alternative 64 bit kernel rather than the standard 64 bit kernel.
To confirm the presence of our newly created pool:
{{console|body=
root@ubuntu:~###i## zpool status
  pool: rpool
state: ONLINE
  scan: none requested
config:


== Creating partitions ==
NAME                                            STATE    READ WRITE CKSUM
There are two ways to partition your disk: You can use your entire drive and let ZFS automatically partition it for you, or you can do it manually.
rpool                                            ONLINE      0    0    0
  ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF  ONLINE      0    0    0


We will be showing you how to partition it '''manually''' because if you partition it manually you get to create your own layout, you get to have your own separate /boot partition (Which is nice since not every bootloader supports booting from ZFS pools), and you get to boot into RAID10, RAID5 (RAIDZ) pools and any other layouts due to you having a separate /boot partition.
errors: No known data errors
 
}}
==== gdisk (GPT Style) ====
 
'''A Fresh Start''':
 
First lets make sure that the disk is completely wiped from any previous disk labels and partitions.
We will also assume that <tt>/dev/sda</tt> is the target drive.<br />


=== Create ZFS Datasets ===
Now, we will create one or more ZFS datasets within our storage pool. These will contain Funtoo Linux.
==== Create the Root file system (Required) ====
<console>
<console>
# ##i##gdisk /dev/sda
# ##i## zfs create -o mountpoint=none -o canmount=off rpool/ROOT
 
# ##i## zfs create -o mountpoint=/ rpool/ROOT/funtoo
Command: ##i##x ↵
Expert command: ##i##z ↵
About to wipe out GPT on /dev/sda. Proceed?: ##i##y ↵
GPT data structures destroyed! You may now partition the disk using fdisk or other utilities.
Blank out MBR?: ##i##y ↵
</console>
</console>
 
==== Create optional Datasets====
{{fancywarning|This is a destructive operation. Make sure you really don't want anything on this disk.}}
The following optional datasets are provided as examples. It is up to the user to create their own datasets.
 
===== Home=====
Now that we have a clean drive, we will create the new layout.
 
'''Create Partition 1''' (boot):
<console>
<console>
Command: ##i##n ↵
# ##i## zfs create -o mountpoint=/home rpool/HOME
Partition Number: ##i##↵
First sector: ##i##↵
Last sector: ##i##+250M ↵
Hex Code: ##i##
</console>
</console>
 
=====Build directory=====
'''Create Partition 2''' (BIOS Boot Partition):
<console>
<console>Command: ##i##n ↵
# ##i## zfs create -o mountpoint=none -o canmount=off rpool/FUNTOO
Partition Number: ##i##
# ##i## zfs create -o mountpoint=/var/tmp/portage -o compression=lz4 -o sync=disabled rpool/FUNTOO/build
First sector: ##i##
Last sector: ##i##+32M ↵
Hex Code: ##i##EF02 ↵
</console>
</console>
=====Swap on ZFS=====
With some careful tuning a swap partition can be created on a ZFS 'volume' [https://github.com/zfsonlinux/zfs/wiki/FAQ]. For a 2 GB swapfs:
{{console|body=
# ##i## zfs create -V 2G -b $(getconf PAGESIZE) -o logbias=throughput -o sync=always -o primarycache=metadata rpool/swap
# ##i## mkswap /dev/zvol/rpool/swap
# ##i## swapon /dev/zvol/rpool/swap
}}
Note that swap on ZFS has known stability issues. If the user has decided to use swap, please take following into account:
Always use long <code>/dev/zvol</code> aliases in configuration files. Never use a short <code>/dev/zdX</code> device name.


'''Create Partition 3''' (ZFS):
To confirm the presence of the filesystems that we have created:
<console>Command: ##i##n ↵
{{console|body=
Partition Number: ##i##↵
root@ubuntu:~# ##i##zfs list -t all
First sector: ##i##↵
NAME                USED  AVAIL  REFER  MOUNTPOINT
Last sector: ##i##↵
rpool              660K  19.3G    96K  none
Hex Code: ##i##bf00 ↵
rpool/HOME          96K  19.3G    96K  /mnt/funtoo/home
 
rpool/ROOT          192K  19.3G    96K  none
Command: ##i##p ↵
rpool/ROOT/funtoo    96K  19.3G    96K  /mnt/funtoo
}}


Number  Start (sector)    End (sector)  Size      Code  Name
===Make the root filesystem bootable===
  1            2048          514047  250.0 MiB  8300  Linux filesystem
{{important|Do not skip this!}}
  2          514048          579583  32.0 MiB    EF02 BIOS boot partition
When booting from ZFS, you must specify a boot device and a root file system within the pool that was identified by the boot deviceBy default, the dataset selected for booting is the one identified by the pool's <code>bootfs</code> property.
  3          579584      1953525134  931.2 GiB  BF00  Solaris root


Command: ##i##w ↵
</console>
=== Format your boot volume ===
Format your separate <tt>/boot</tt> partition:
<console>
<console>
# ##i##mkfs.ext2 /dev/sda1
# ##i##zpool set bootfs=rpool/ROOT/funtoo rpool
</console>
</console>


=== Encryption (Optional) ===
== Installing Funtoo ==
If you want encryption, then create your encrypted vault(s) now by doing the following:
Now that the initial ZFS pool and datasets have been created, we can unpack the stage 3 tarball and proceed with basic system installation. This part does not differ much from a regular Funtoo Linux installation (https://www.funtoo.org/Install#Installing_the_Stage_3_tarball). We recommend using <code>funtoo-current</code> stages for ZFS.


<console>
{{console|body=
# ##i##cryptsetup luksFormat /dev/sda3
# ##i##cd /mnt/funtoo
# ##i##cryptsetup luksOpen /dev/sda3 vault_1
# ##i##wget https://build.funtoo.org/next/x86-64bit/generic_64/stage3-latest.tar.xz
</console>
}}
Extract the contents with the following command. If the user is using an arch-optimized stage 3 tarball, substitute in the actual filename.


=== Create the zpool ===
{{console|body=
We will first create the pool. The pool will be named `tank` and the disk will be aligned to 4096 (using ashift=12)
# ##i##cd /mnt/funtoo
<console># ##i##zpool create -f -o ashift=12 -o cachefile= -O compression=on -m none -R /mnt/funtoo tank /dev/sda3</console>
# ##i##tar xpf stage3-latest.tar.xz
}}


{{fancyimportant|If you are using encrypted root, change '''/dev/sda3 to /dev/mapper/vault_1'''.}}
Now, we need to create a chroot environment:


{{fancynote| '''ashift<nowiki>=</nowiki>12''' should be use if you have a newer, advanced format disk that has a sector size of 4096 bytes. If you have an older disk with 512 byte sectors, you should use '''ashift<nowiki>=</nowiki>9''' or don't add the option for auto detection.}}
{{console|body=
# ##i##cd /mnt/funtoo
# ##i##mount -t proc none proc
# ##i##mount --rbind /sys sys
# ##i##mount --rbind /dev dev
}}


{{fancynote| If you have a previous pool that you would like to import, you can do a: '''zpool import -f -R /mnt/funtoo <pool_name>'''.}}
An important step is to copy the ZFS cache into the chroot. The ZFS cache was created when <code>rpool</code> was created with the <code>-o cachefile=/tmp/zpool.cache</code> flag.
{{console|body=
# ##i##mkdir -p /mnt/funtoo/etc/zfs
# ##i##cp /tmp/zpool.cache /mnt/funtoo/etc/zfs/zpool.cache
}}


=== Create the zfs datasets ===
You will also want to copy over {{f|resolv.conf}} in order to have proper resolution of Internet hostnames from inside the chroot:
We will now create some datasets. For this installation, we will create a small but future proof amount of datasets. We will have a dataset for the OS (/), and your swap. We will also show you how to create some optional datasets: <tt>/home</tt>, <tt>/var</tt>, <tt>/usr/src</tt>, and <tt>/usr/portage</tt>.


<console>
{{console|body=
Create some empty containers for organization purposes, and make the dataset that will hold /
# ##i##cp /etc/resolv.conf /mnt/funtoo/etc/
# ##i##zfs create -p tank/os/funtoo
}}
# ##i##zfs create -o mountpoint=/ tank/os/funtoo/root
We are now ready to <code>chroot</code>.
 
Optional, but recommended datasets: /home
# ##i##zfs create -o mountpoint=/home tank/os/funtoo/home
 
Optional datasets: /usr/src, /usr/portage/{distfiles,packages}
# ##i##zfs create -o mountpoint=/usr/src tank/os/funtoo/src
# ##i##zfs create -o mountpoint=/usr/portage -o compression=off tank/os/funtoo/portage
# ##i##zfs create -o mountpoint=/usr/portage/distfiles tank/os/funtoo/portage/distfiles
# ##i##zfs create -o mountpoint=/usr/portage/packages tank/os/funtoo/portage/packages
</console>


=== Create your swap zvol ===
{{console|body=
'''Make your swap +1G greater than your RAM. An 8G machine would have 9G of SWAP (This is kinda big though). For machines with this much memory, You could just make it 2G if you don't have any problems.'''
# ##i##chroot /mnt/funtoo /bin/bash
<console>
# ##i##export PS1="(chroot) $PS1"; cd
# ##i##zfs create -o sync=always -o primarycache=metadata -o secondarycache=none -o volblocksize=4K -V 1G tank/swap
}}
</console>


=== Format your swap zvol ===
==Configuring your system==
<console>
Configure your system according to the main [[Install|install guide]]. During startup, ZFS filesystems will be mounted '''without''' needing any entries in {{f|/etc/fstab}}. Comment out all entries in {{f|/etc/fstab}} except for partitions such as CD-ROMs, tmpfs, etc., if used.
# ##i##mkswap -f /dev/zvol/tank/swap
# ##i##swapon /dev/zvol/tank/swap
</console>


Now we will continue to install funtoo.
If you created a '''swap''' volume earlier, add an appropriate entry to {{f|/etc/fstab}}.
{{console|body=
# ##i## echo /dev/zvol/rpool/swap none swap defaults 0 0 >> /etc/fstab
}}
Note that swap on ZFS is unstable. If you decide to use swap, please take following into account:
always use long <code>/dev/zvol</code> aliases in configuration files. Never use a short <code>/dev/zdX</code> device name.


== Installing Funtoo ==
Next, update the portage tree:
[[Funtoo_Linux_Installation|Download and extract the Funtoo stage3 and continue installation as normal.]]
{{console|body=
###i## ego sync
###i## env-update
###i## source /etc/profile
}}


Then once you've extracted the stage3, chroot into your new funtoo environment:
== Installing ZFS userspace and bootloader==
<console>
=== Installing the ZFS userspace tools and kernel modules ===
Go into the directory that you will chroot into
# ##i##cd /mnt/funtoo


Mount your boot drive
Install the ZFS packages and sync the portage tree, if required:
# ##i##mount /dev/sda1 /mnt/funtoo/boot
{{console|body=
###i## ego sync
###i## emerge --ask sys-fs/zfs
}}


Bind the kernel related directories
Once it has successfully merged, add the following services to the boot runlevel of OpenRC:
# ##i##mount -t proc none /mnt/funtoo/proc
{{console|body=
# ##i##mount --rbind /dev /mnt/funtoo/dev
###i## rc-update add zfs-import boot
# ##i##mount --rbind /sys /mnt/funtoo/sys
###i## rc-update add zfs-mount boot
}}
Add another two services to the default runlevel:
{{console|body=
###i## rc-update add zfs-share default
###i## rc-update add zfs-zed default
}}


Copy network settings
=== Create a ZFS-friendly initramfs ===
# ##i##cp /etc/resolv.conf /mnt/funtoo/etc/
The Funtoo stage3 includes a linux kernel and initramfs. The initramfs is designed to mount and start Funtoo Linux on a variety of file systems. The initramfs contained within the stage3 will '''not''' mount and start Funtoo in our ZFS storage pool. We must create an updated 'ZFS-friendly' initramfs.


chroot into your new funtoo environment
Optional: Update to the latest {{package|sys-kernel/genkernel}}:
# ##i##env -i HOME=/root TERM=$TERM chroot /mnt/funtoo /bin/bash --login
{{console|body=
# ##i##emerge --oneshot sys-kernel/genkernel
}}


Place your mountpoints into your /etc/mtab file
Use {{c|genkernel}} to create an initramfs capable of mounting our ZFS Storage Pool via the {{c|--zfs}} switch. Adjust {{c|--makeopts}} according to the number of available threads:
# ##i##cat /proc/mounts > /etc/mtab
{{console|body=
# ##i##genkernel initramfs --no-clean --no-mountboot --makeopts=-j4 --kernel-config=/usr/src/linux/.config --zfs
##g##* Funtoo Linux Genkernel; Version 3.4.40.11-funtoo##!g##
##g##*##!g## Running with options: initramfs --no-clean --no-mountboot --makeopts=-j4 --kernel-config=/usr/src/linux/.config --zfs


Sync your tree
##g##*##!g## Linux Kernel 4.5.2-1 for x86_64...
# ##i##emerge --sync
##g##*##!g## .. with config file /usr/src/linux-debian-sources-4.5.2/.config
</console>
##g##*##!g## busybox: >> Using cache
##g##*##!g## initramfs: >> Initializing...
##g##*##!g##        >> Appending base_layout cpio data...
##g##*##!g##        >> Appending auxilary cpio data...
##g##*##!g##        >> Copying keymaps
##g##*##!g##        >> Appending busybox cpio data...
##g##*##!g##        >> Appending modules cpio data...
##g##*##!g##        >> Appending zfs cpio data...
cp: cannot stat ‘/etc/zfs/zdev.conf’: No such file or directory
##y##*##!y## Could not copy file /etc/zfs/zdev.conf for ZFS
##g##*##!g##        >> Appending blkid cpio data...
##g##*##!g##        >> Appending modprobed cpio data...
##g##*##!g##        >> Compressing cpio data (.xz)...


=== Add filesystems to /etc/fstab ===
##y##*##!y## WARNING... WARNING... WARNING...
##y##*##!y## Additional kernel cmdline arguments that *may* be required to boot properly...
##y##*##!y## add "dozfs" for ZFS volume management support
##y##*##!y## add either "real_root=ZFS" (bootfs autodetection) or "real_root=ZFS=<dataset>" to boot from a ZFS dataset


Before we continue to compile and or install our kernel in the next step, we will edit the <tt>/etc/fstab</tt> file because if we decide to install our kernel through portage, portage will need to know where is your <tt>/boot</tt> so that it can place the files in there. We also need to update <tt>/etc/mtab</tt> so our system knows what is mounted. Edit <tt>/etc/fstab</tt>:
##g##*##!g## Do NOT report kernel bugs as genkernel bugs unless your bug
##g##*##!g## is about the default genkernel configuration...
##g##*##!g##
##g##*##!g## Make sure you have the latest ~arch genkernel before reporting bugs.
}}


<pre>
Confirm the presence of the new initramfs:
# <fs>                  <mountpoint>    <type>          <opts>          <dump/pass>
{{console|body=
###i## ls /boot/*genkernel*
/boot/initramfs-genkernel-x86_64-4.5.2-1
}}


/dev/sda1              /boot          ext2            defaults        0 2
Grub expects the initramfs filename to be of the form: <code>initramfs-${KNAME}-${ARCH}-${KV}</code>. This guide assumes the usage of debian-sources. Tailor it to your specific kernel name, platform, and kernel version. Forgetting to rename <code>initramfs-genkernel</code> to <code>initramfs-debian-sources</code> will render the system unbootable.
/dev/zvol/tank/swap    none            swap            sw              0 0
{{console|body=
</pre>
###i## cd /boot
 
###i## mv initramfs-genkernel-x86_64-4.5.2-1 initramfs-debian-sources-x86_64-4.5.2-1
== Kernel Configuration ==
###i## ls /boot/*initramfs*
To speed up this step, you can install "bliss-kernel" since it's already properly configured for ZFS and a lot of other configurations. The kernel is also compiled and ready to go. To install {{Package|sys-kernel/bliss-kernel}} type the following:
/boot/initramfs-debian-sources-x86_64-4.5.2-1
}}


=== Installing GRUB 2  ===
GRUB 2 must be built with support for ZFS Storage Pools on a single disk. This is achieved using the 'libzfs' USE flag.
<console>
<console>
# ##i##emerge bliss-kernel
# ##i##echo "sys-boot/grub libzfs" >> /etc/portage/package.use
</console>
</console>


Now make sure that your <tt>/usr/src/linux symlink</tt> is pointing to this kernel by typing the following:
{{Note|If you have defined GRUB_PLATFORMS in your {{f|/etc/portage/make.conf}}, please ensure that it includes 'pc': e.g. GRUB_PLATFORMS{{=}}"efi-64 pc".
<console>
# ##i##eselect kernel list
Available kernel symlink targets:
[1]  linux-3.10.10-FB.01 *
</console>
You should see a star next to the bliss-kernel version you installed. In this case it was 3.10.10-FB.01. If it's not set, you can type '''eselect kernel set #'''.


== Installing the ZFS userspace tools and kernel modules ==
This is required for booting in BIOS (non-UEFI) mode, as described in this guide.}}
Emerge {{Package|sys-fs/zfs}}, {{Package|sys-kernel/spl}}, and {{Package|sys-fs/zfs-kmod}}:
<console># ##i##emerge zfs </console>
Check to make sure that the zfs tools are working, the <code>zpool.cache</code> file that you copied before should be displayed.


{{Fancynote| SPL stands for: Solaris Porting Layer}}
Now, install GRUB:
<console>
<console>
# ##i##zpool status
# ##i##emerge grub
# ##i##zfs list
</console>
</console>


If everything worked, continue.
=== Configuring the Bootloader ===
 
When {{c|zpool}} created our storage pool (rpool), it created partitions under a GPT scheme. In order to boot Funtoo Linux on a GPT partion under legacy (BIOS) boot, <code>sys-boot/grub</code> requires a small partition, called a BIOS boot partition. By design, ZFS ({{c|zpool}}) left a very small unpartitioned space at the beginning of the disk. We will use <code>sgdisk</code>, which is part of <code>sys-apps/gptfdisk</code>, to format this free space into a BIOS boot partition.
== Install the bootloader ==
=== GRUB 2 ===
Before you do this, make sure this checklist is followed:
* Installed kernel and kernel modules
* Installed zfs package from the tree
* <code>/dev</code>, <code>/proc</code>, <code>/sys</code> are mounted in the chroot environment
 
Once all this is checked, let's install grub2. First we need to enable the "libzfs" use flag so zfs support is compiled for grub2.
 
<console># ##i##echo "sys-boot/grub libzfs" >> /etc/portage/package.use</console>
 
Then we will compile grub2:


<console># ##i##emerge grub</console>
{{console|body=
###i## sgdisk -a1 -n2:48:2047 -t2:EF02 -c2:"BIOS boot partition" /dev/disk/by-id/ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF
}}


Once this is done, you can check that grub is version 2.00 by doing the following command:
To avoid problems with GRUB, use {{c|partx}} to refresh the list of partitions that are 'seen' by the kernel. Do this for each drive (/dev/sda, /dev/sdb, etc.).
<console>
{{console|body=
# ##i##grub-install --version
###i## partx -u /dev/sda
grub-install (GRUB) 2.00
}}
</console>


Now try to install {{Package|sys-boot/grub}}:
A quick check to verify that GRUB 2 sees/supports ZFS:
<console>
{{console|body=
# ##i##grub-install --recheck /dev/sda
###i## touch /etc/mtab
</console>
###i## grub-probe /
zfs
}}


You should receive the following message:
Installing GRUB2 to disk is as easy as:
<console>
{{console|body=
###i## grub-install /dev/disk/by-id/ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF
Installing for i386-pc platform.
Installation finished. No error reported.
Installation finished. No error reported.
</console>
}}


If not, then go back to the above checklist.
Now, it's time for us to create grub's configuration file. First, we must edit a few GRUB 2 settings in {{f|/etc/default/grub}}:
{{important|The following is required to boot Funtoo Linux on ZFS!}}
Replace the line
{{file|name=/etc/default/grub|desc=before|body=
#GRUB_CMDLINE_LINUX=""
}}
with
{{file|name=/etc/default/grub|desc=after|body=
GRUB_CMDLINE_LINUX="dozfs real_root=ZFS=rpool/ROOT/funtoo"
}}


=== LILO ===
Now, create GRUB 2 configuration file:
Before you do this, make sure the following checklist is followed:
{{console|body=
* <code>/dev</code>, <tt>/proc</tt> and <tt>/sys</tt> are mounted.
###i## grub-mkconfig -o /boot/grub/grub.cfg
* Installed the {{Package|sys-fs/zfs}} package from the tree.
Generating grub configuration file ...
Once the above requirements are met, LILO can be installed.
Found linux image: /boot/kernel-debian-sources-x86_64-4.5.2-1
Found initrd image: /boot/initramfs-genkernel-x86_64-4.5.2-1
done
}}


Now we will install {{Package|sys-boot/lilo}}.
If grub-mkconfig cannot find the initrd image, manually add initrd to the generated {{c|/boot/grub/grub.cfg}}, below the linux line:
<console># ##i##emerge sys-boot/lilo</console>
{{file|name=/boot/grub/grub.cfg|desc=adding initrd below the linux line|body=
Once the installation of LILO is complete we will need to edit the <tt>/etc/lilo.conf</tt> file:
echo    'Loading Linux x86_64-4.5.2-1 ...'
linux  /ROOT/funtoo@/boot/kernel-debian-sources-x86_64-4.5.2-1 root=ZFS=rpool/ROOT/funtoo ro dozfs real_root=ZFS
echo    'Loading initial ramdisk ...'
initrd  /ROOT/funtoo@/boot/initramfs-debian-sources-x86_64-4.5.2-1
}}


A quick check to verify that the GRUB ZFS module is in place:
{{console|body=
###i## ls /boot/grub/*/zfs.mod
/boot/grub/i386-pc/zfs.mod
}}


<pre>
== Final configuration ==
boot=/dev/sda
Configure your network according to the main [[Install#Configuring_your_network|installation guide]].
prompt
timeout=4
default=Funtoo


image=/boot/bzImage
Set the root password.
      label=Funtoo
{{console|body=
      read-only
(chroot) ###i## passwd
      append="root=tank/os/funtoo/root"
}}
      initrd=/boot/initramfs
</pre>
All that is left now is to install the bootcode to the MBR.


This can be accomplished by running:
Exit the chroot and export your ZFS storage pool.
<console># ##i##/sbin/lilo</console>
{{console|body=
If it is successful you should see:
(chroot) ###i## exit
<console>
###i## umount -lR {dev,proc,sys}
Warning: LBA32 addressing assumed
###i## cd /
Added Funtoo + *
###i## zpool export rpool
One warning was issued
}}
</console>


== Create the initramfs ==
Restart to boot into Funtoo Linux on a ZFS root!
There are two ways to do this, you can use genkernel, or you can use my bliss initramfs creator. I will show you both.


=== genkernel ===
== After reboot ==
<console>
===Snapshot===
# ##i##emerge sys-kernel/genkernel
Take a snapshot of your Funtoo ''at installation''.
# You only need to add --luks if you used encryption
{{console|body=
# ##i##genkernel --zfs --luks initramfs
###i## zfs snapshot rpool/ROOT/funtoo@install
</console>
}}
 
The use of snapshots, including sending snapshots as a method of backup, are not covered in this guide. See [[ZFS_Install_Guide#Further_Reading|Further Reading]].
=== Bliss Initramfs Creator ===
If you are encrypting your drives, then add the "luks" use flag to your package.use before emerging:
 
<console>
# ##i##echo "sys-kernel/bliss-initramfs luks" >> /etc/portage/package.use
</console>


Now install the creator:
===ZFS Adjustable Replacement Cache (ARC) size===
The Adjustable Replacement Cache (ARC) is a fundamental part of ZFS. Refer to this [https://pthree.org/2012/12/07/zfs-administration-part-iv-the-adjustable-replacement-cache%20link article] by Aaron Toponce for details on how to set up an ARC.


<console>
Without configuration, ZFS will use up to 50% of your memory (RAM) for the ARC. It is possible to change this maximum. There are different ways to achieve this on both a temporary and persistent basis. One such way is to create and edit the file {{f|/etc/modprobe.d/zfs.conf}}, which affects the ZFS kernel module.
# ##i##emerge bliss-initramfs
</console>


{{file|name=/etc/modprobe.d/zfs.conf|desc=set maximum ARC size to 4 GiB|body=
options zfs zfs_arc_max=4294967296
}}
where {{c|zfs_arc_max}} is set to a value in Bytes. After configuring this file, re-generate the initramfs. Rebooting will then apply this change.


Then go into the install directory, run the script as root, and place it into /boot:
To apply this change immediately without a reboot, issue the command:
<console># ##i##cd /opt/bliss-initramfs
{{console|body=
# ##i##./createInit
# ##i## echo 4294967296 >> /sys/module/zfs/parameters/zfs_arc_max
# ##i##mv initrd-<kernel_name> /boot
}}
</console>
'''<kernel_name>''' is the name of what you selected in the initramfs creator, and the name of the outputted file.


== Using boot-update ==
Reference: https://wiki.gentoo.org/wiki/ZFS#ARC
=== /boot on separate partition ===
If you created a separate non-zfs partition for boot then configuring boot-update is almost exactly the same as a normal install except that auto detection for root does not work. You must tell boot-update what your root is.  
==== Genkernel ====
If your using genkernel you must add 'real_root=ZFS=<root>' and 'dozfs' to your params.
Example entry for <tt>/etc/boot.conf</tt>:


<pre>
===After Kernel or ZFS updates===
"Funtoo ZFS" {
The default Funtoo Linux kernel ({{package|sys-kernel/debian-sources}}) does not automatically build a ZFS-capable initramfs. Similarly, the package {{c|sys-fs/zfs}} and its dependencies do not automatically build a ZFS-capable initramfs.
        kernel vmlinuz[-v]
        initrd initramfs-genkernel-x86_64[-v]
        params real_root=ZFS=tank/os/funtoo/root
        params += dozfs=force
        # Also add 'params += crypt_root=/dev/sda3' if you used encryption
        # Adjust the above setting to your system if needed
}
</pre>


==== Bliss Initramfs Creator ====
After each kernel update, you must recreate an initramfs. Similarly, {{c|sys-fs/zfs}} updates also require you to regenerate an initramfs. This is especially true for updates to {{c|sys-fs/zfs}} that introduce new storage pool features. Neglecting to update your initramfs will make your system unbootable.
If you used the Bliss Initramfs Creator then all you need to do is add 'root=<root>' to your params.
Example entry for <tt>/etc/boot.conf</tt>:


<pre>
First, rebuild {{c|sys-fs/zfs}}, {{c|sys-fs/zfs-kmod}} and {{c|sys-kernel/spl}}:
"Funtoo ZFS" {
        kernel vmlinuz[-v]
        initrd initrd[-v]
        params root=tank/os/funtoo/root quiet
        # If you have an encrypted device with a regular passphrase,
        # you can add the following line
        params += enc_root=/dev/sda3 enc_type=pass
}
</pre>


After editing /etc/boot.conf, you just need to run boot-update to update grub.cfg
{{console|body=
<console>
# ##i##emerge --ask --verbose -1 zfs zfs-kmod spl
###i## boot-update
}}
</console>


=== /boot on ZFS ===
Then, follow the earlier instructions to create a new initramfs:
TBC - pending update to boot-update to support this
{{console|body=
# ##i##genkernel initramfs --no-clean --no-mountboot --makeopts=-j4 --kernel-config=/usr/src/linux/.config --zfs
# ##i##cd /boot
# ##i##mv initramfs-genkernel-x86_64-4.5.2-1 initramfs-debian-sources-x86_64-4.5.2-1
}}


== Final configuration ==
Finally, repeat the earlier instructions for generating {{c|/boot/grub/grub.cfg}} and manually adding the new initramfs as initrd to the generated {{c|/boot/grub/grub.cfg}}.
=== Add the zfs tools to openrc ===
<console># ##i##rc-update add zfs boot</console>


=== Clean up and reboot ===
== Further Reading ==
We are almost done, we are just going to clean up, '''set our root password''', and unmount whatever we mounted and get out.
ZFS has many interesting features not covered by this guide.


<console>
Useful information and instructions can be found in the online reference manuals. See {{c|man zpool}} and {{c|man zfs}}.
Delete the stage3 tarball that you downloaded earlier so it doesn't take up space.
# ##i##cd /
# ##i##rm stage3-latest.tar.xz


Set your root password
Aaron Toponce's Zpool/ZFS Administration Guides - https://pthree.org/2012/12/04/zfs-administration-part-i-vdevs
# ##i##passwd
>> Enter your password, you won't see what you are writing (for security reasons), but it is there!


Get out of the chroot environment
ZFS on Linux - http://www.zfsonlinux.org
# ##i##exit


Unmount all the kernel filesystem stuff and boot (if you have a separate /boot)
ZFS - Gentoo Wiki - https://wiki.gentoo.org/wiki/ZFS
# ##i##umount -l proc dev sys boot


Turn off the swap
== Troubleshooting ==
# ##i##swapoff /dev/zvol/tank/swap
=== Forgot to reset password? ===
You will need to chroot into your Funtoo on ZFS root installation if you forgot to set the root password. Repeat the earlier instructions to load the the live CD/USB, including the installation of ZFS kernel modules.


Export the zpool
When the ZFS kernel modules are loaded, your existing ZFS Storage Pool (rpool) will be imported automatically. This will also result in an attempt to mount the various ZFS filesystems that you created. Mounting your root partition (/) will fail since this location is not empty; / is allocated to the live CD/USB distribution!
# ##i##cd /
{{console|body=
# ##i##zpool export tank
###i## zpool status
  pool: rpool
state: ONLINE
  scan: none requested
config:


Reboot
NAME                                            STATE    READ WRITE CKSUM
# ##i##reboot
rpool                                            ONLINE      0    0    0
</console>
  ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF  ONLINE      0    0    0


{{fancyimportant|'''Don't forget to set your root password as stated above before exiting chroot and rebooting. If you don't set the root password, you won't be able to log into your new system.'''}}
errors: No known data errors
}}


and that should be enough to get your system to boot on ZFS.
To get around this issue, first, manually export the pool.
{{console|body=
###i## zpool export rpool
###i## zpool list
no pools available
}}


== After reboot ==
Now, import your storage pool using the following command.
=== Create initial ZFS Snapshot ===
{{console|body=
Continue to set up anything you need in terms of /etc configurations. Once you have everything the way you like it, take a snapshot of your system. You will be using this snapshot to revert back to this state if anything ever happens to your system down the road. The snapshots are cheap, and almost instant.  
###i## zpool import -o cachefile=/tmp/zpool.cache -R /mnt/funtoo -d /dev/disk/by-id/ rpool
}}
This will import rpool and place your Funtoo install at {{f|/mnt/funtoo}}. Follow the earlier set of instructions to chroot into your Funtoo Installation on ZFS root.


To take the snapshot of your system, type the following:
=== Will not mount on first reboot? ===
<console># ##i##zfs snapshot -r tank@install</console>
Follow the above instructions on "Forgot to reset password?" to import and mount your storage pool (rpool) and chroot back into your Funtoo environment.


To see if your snapshot was taken, type:
Things to check:
<console># ##i##zfs list -t snapshot</console>
* Was the ''bootfs'' property of rpool set? Use {{c|zpool get bootfs rpool}} to check
* Was /tmp/zpool.cache copied into /mnt/funtoo/etc/zfs/ prior to chroot and creating the initramfs?
* Was {{c|genkernel initramfs}} run with the --zfs switch and --kernel-config pointing to the correct configuration file?
* Was GRUB installed and configured correctly?


If your machine ever fails and you need to get back to this state, just type (This will only revert your / dataset while keeping the rest of your data intact):
===  rpool is 'busy' on zpool export ===
<console># ##i##zfs rollback tank/os/funtoo/root@install</console>
This happens when swapon is used.
Swap must be turned off to free the pool for export.


{{fancyimportant|'''For a detailed overview, presentation of ZFS' capabilities, as well as usage examples, please refer to the [[ZFS_Fun|ZFS Fun]] page.'''}}
=== Unable to add universe repository in Ubuntu? ===
See http://askubuntu.com/questions/761592/unable-to-apt-get-dist-upgrade-on-a-persistent-ubuntu-16-04-usb


[[Category:HOWTO]]
[[Category:HOWTO]]
[[Category:Filesystems]]
[[Category:Filesystems]]
[[Category:Featured]]


__NOTITLE__
__NOTITLE__

Latest revision as of 09:35, September 16, 2023

   Warning

This page is unofficial. ZFS as root filesystem is not supported under Funtoo Linux, mainly because it has limited benefit. ZFS is still supported but boot on a non-ZFS filesystem first. See ZFS.

Introduction

This wiki article will show you how to install Funtoo on ZFS (rootfs).

Prerequisites

   Important

ZFS is designed for 64-bit systems. We only recommend and support 64-bit platforms and installations!

   Warning

ZFS v07.5 (latest in ports as of 18 Jan 2018) is compatible with kernel versions 2.6.32 - 4.14

   Warning

The guide is under rewrite

It is recommended to give the entire disk to ZFS. As such, this guide will only show how to install ZFS on the whole disk, using legacy boot. Installing on UEFI requires a separate partition for /boot, formatted as FAT32, and is out of the scope of this guide, even though installation on UEFI is certainly possible. Also, this guide will not cover anything related to encryption (native encryption is available: https://github.com/zfsonlinux/zfs/commit/b52563034230b35f0562b6f40ad1a00f02bd9a05).

Downloading the ISO (With ZFS)

In order to install Funtoo on ZFS, you will need an environment, such as live media, that provides the ZFS tools. This guide will utilize the Ubuntu Desktop 16.04 (live) DVD for amd64.

  • Download from [1]

Creating a bootable USB from ISO (From a Linux Environment)

After you download the iso, you can do the following steps to create a bootable USB:

   Note

The size of the iso is approximately 1.5 GB.

Insert your blank USB media into a USB port. Then, inspect the kernel ring buffer with dmesg to identify the device name of your USB storage.

[  +5.533491] usb 6-2: new SuperSpeed USB device number 4 using xhci_hcd
[  +0.022995] usb 6-2: New USB device found, idVendor=1b1c, idProduct=1a0c
[  +0.000006] usb 6-2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[  +0.000003] usb 6-2: Product: Voyager Mini 3.0
[  +0.000003] usb 6-2: Manufacturer: Corsair
[  +0.000002] usb 6-2: SerialNumber: 0123456789ABCDEF
[  +0.001095] usb-storage 6-2:1.0: USB Mass Storage device detected
[  +0.000080] scsi host15: usb-storage 6-2:1.0
[  +1.000772] scsi 15:0:0:0: Direct-Access     Corsair  Voyager Mini 3.0 PMAP PQ: 0 ANSI: 6
[  +0.000615] sd 15:0:0:0: Attached scsi generic sg6 type 0
[  +0.000110] sd 15:0:0:0: [sdg] 60566016 512-byte logical blocks: (31.0 GB/28.9 GiB)
[  +0.000209] sd 15:0:0:0: [sdg] Write Protect is off
[  +0.000004] sd 15:0:0:0: [sdg] Mode Sense: 2b 00 00 08
[  +0.000227] sd 15:0:0:0: [sdg] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA
[  +0.359532] sd 15:0:0:0: [sdg] Attached SCSI removable disk

In this example, [sdg] indicates that the device is /dev/sdg.

A quick and easy way to create a bootable USB is to write the ISO data to the USB device using dd.

root # dd if=/path/to/iso/ubuntu-16.04-desktop-amd64.iso of=/dev/sdg bs=4K

Once this has completed, remove and use this USB to boot the target system that will receive Funtoo Linux.

Booting the ISO

Using legacy (BIOS) boot mode, boot the ISO and allow Ubuntu to load the graphical environment. You will be presented with a "Welcome" dialog (titled Install (as superuser)). Select the option "Try Ubuntu".

Once the desktop has loaded, open the search bar by left-clicking on the top-left icon ("Search your computer"). Pressing Alt+F1 should also open this search bar. Search for and open the Terminal application.

In the terminal, issue the following commands to install and load the required ZFS module.

ubuntu@ubuntu:~$ sudo -i
root@ubuntu:~# apt-add-repository universe
root@ubuntu:~# apt update
root@ubuntu:~# apt install --yes debootstrap gdisk zfs-initramfs

Verify that the ZFS kernel module has loaded.

root@ubuntu:~#  dmesg | grep ZFS
[  377.595348] ZFS: Loaded module v0.6.5.6-0ubuntu10, ZFS pool version 5000, ZFS filesystem version 5

Drive Partitions

We are letting ZFS automatically partition the drive. This is ideal for our example using a single disk and legacy (BIOS) boot.

Creating of pool

Create a ZFS Storage Pool using a single whole disk.

root@ubuntu:~# zpool create -d -o feature@async_destroy=enabled -o feature@empty_bpobj=enabled -o feature@lz4_compress=enabled -o feature@spacemap_histogram=enabled -o feature@enabled_txg=enabled -o feature@extensible_dataset=enabled -o feature@bookmarks=enabled -f -o ashift=12 -o cachefile=/tmp/zpool.cache -O normalization=formD -O atime=off -O xattr=sa -O compression=lz4 -m none -R /mnt/funtoo rpool /dev/disk/by-id/foo

The options used here are

optiondescription
createUse zpool to create a ZFS Storage Pool.
-dRequired. Disables enabling all availabe zfs features. This is needed as the GRUB bootloader currently can't handle all advanced zfs features, not specifying this flag on pool creation (or running 'zpool upgrade' on the pool at a later point in time) will make the pool incompatible with GRUB.
(multiple) -o feature@<name>=enabledExplicitely enable all features currently supported by GRUB. See 'man zpool-features' for details on their effects.
-fForce the use of the selected disk.
-o ashift=12Alignment of the pool to underlying hard drive sectors. The recommended value is 12, which corresponds to 2^12 Bytes or 4 KiB. This value is typical for present-day HDD's. Can only be set once at pool creation.
-o cachefile=/tmp/zpool.cacheCreate a pool configuration cache and place it in /tmp. This will be required for our Funtoo install.
-O normalization=formDRecommended. Set the default Unicode (UTF-8) normalization for future filesystems (created within this pool) to 'formD'.
-O atime=offRecommended. As a default preference, set future filesystems (created within this pool) to not update file access time. Useful if we want to reduce writes to disk (e.g., Solid State Drives). Can cause problems for mailers and other software that rely on file access-time data.
-O xattr=saRecommended. As a default preference, set future filesystems (created within this pool) to store extended file attributes in a more efficient manner.
-O compression=lz4Recommended. As a default preference, set future filesystems (created within this pool) to be compressed using the lz4 algorithm. Useful in general as the runtime cost for compression is neglible on these days while on-disk space still costs money.
-m noneDo not set mountpoint for this storage pool. (This guide will address this later).
-R /mnt/funtooAlternate root directory. Essentially a temporary 'mount point' for our pool.
rpoolThe name of this ZFS Storage Pool. The pool name is irrelevant. rpool will be used throughout this guide.
/dev/disk/by-id/fooThe path to the physical disk. e.g. /dev/disk/by-id/ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF. Known in 'ZFS-speak' as a 'VDEV'.

Please note that the options 'ashift' and 'cachefile' are preceded with a lowercase '-o', while 'normalization' and 'atime' are preceded with an uppercase '-O'.

Without additional options, this will create our storage pool and enable all 'features' available under version 0.6.5.6. The pool will be automatically mounted at the (temporary) location /mnt/funtoo.

To confirm the presence of our newly created pool:

root@ubuntu:~# zpool status
  pool: rpool
 state: ONLINE
  scan: none requested
config:

	NAME                                             STATE     READ WRITE CKSUM
	rpool                                            ONLINE       0     0     0
	  ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF  ONLINE       0     0     0

errors: No known data errors

Create ZFS Datasets

Now, we will create one or more ZFS datasets within our storage pool. These will contain Funtoo Linux.

Create the Root file system (Required)

root #  zfs create -o mountpoint=none -o canmount=off rpool/ROOT
root #  zfs create -o mountpoint=/ rpool/ROOT/funtoo

Create optional Datasets

The following optional datasets are provided as examples. It is up to the user to create their own datasets.

Home
root #  zfs create -o mountpoint=/home rpool/HOME
Build directory
root #  zfs create -o mountpoint=none -o canmount=off rpool/FUNTOO
root #  zfs create -o mountpoint=/var/tmp/portage -o compression=lz4 -o sync=disabled rpool/FUNTOO/build
Swap on ZFS

With some careful tuning a swap partition can be created on a ZFS 'volume' [2]. For a 2 GB swapfs:

root #  zfs create -V 2G -b $(getconf PAGESIZE) -o logbias=throughput -o sync=always -o primarycache=metadata rpool/swap
root #  mkswap /dev/zvol/rpool/swap
root #  swapon /dev/zvol/rpool/swap

Note that swap on ZFS has known stability issues. If the user has decided to use swap, please take following into account: Always use long /dev/zvol aliases in configuration files. Never use a short /dev/zdX device name.

To confirm the presence of the filesystems that we have created:

root@ubuntu:~# zfs list -t all
NAME                USED  AVAIL  REFER  MOUNTPOINT
rpool               660K  19.3G    96K  none
rpool/HOME           96K  19.3G    96K  /mnt/funtoo/home
rpool/ROOT          192K  19.3G    96K  none
rpool/ROOT/funtoo    96K  19.3G    96K  /mnt/funtoo

Make the root filesystem bootable

   Important

Do not skip this!

When booting from ZFS, you must specify a boot device and a root file system within the pool that was identified by the boot device. By default, the dataset selected for booting is the one identified by the pool's bootfs property.

root # zpool set bootfs=rpool/ROOT/funtoo rpool

Installing Funtoo

Now that the initial ZFS pool and datasets have been created, we can unpack the stage 3 tarball and proceed with basic system installation. This part does not differ much from a regular Funtoo Linux installation (https://www.funtoo.org/Install#Installing_the_Stage_3_tarball). We recommend using funtoo-current stages for ZFS.

root # cd /mnt/funtoo
root # wget https://build.funtoo.org/next/x86-64bit/generic_64/stage3-latest.tar.xz

Extract the contents with the following command. If the user is using an arch-optimized stage 3 tarball, substitute in the actual filename.

root # cd /mnt/funtoo
root # tar xpf stage3-latest.tar.xz

Now, we need to create a chroot environment:

root # cd /mnt/funtoo
root # mount -t proc none proc
root # mount --rbind /sys sys
root # mount --rbind /dev dev

An important step is to copy the ZFS cache into the chroot. The ZFS cache was created when rpool was created with the -o cachefile=/tmp/zpool.cache flag.

root # mkdir -p /mnt/funtoo/etc/zfs
root # cp /tmp/zpool.cache /mnt/funtoo/etc/zfs/zpool.cache

You will also want to copy over resolv.conf in order to have proper resolution of Internet hostnames from inside the chroot:

root # cp /etc/resolv.conf /mnt/funtoo/etc/

We are now ready to chroot.

root # chroot /mnt/funtoo /bin/bash
root # export PS1="(chroot) $PS1"; cd

Configuring your system

Configure your system according to the main install guide. During startup, ZFS filesystems will be mounted without needing any entries in /etc/fstab. Comment out all entries in /etc/fstab except for partitions such as CD-ROMs, tmpfs, etc., if used.

If you created a swap volume earlier, add an appropriate entry to /etc/fstab.

root #  echo /dev/zvol/rpool/swap none swap defaults 0 0 >> /etc/fstab

Note that swap on ZFS is unstable. If you decide to use swap, please take following into account: always use long /dev/zvol aliases in configuration files. Never use a short /dev/zdX device name.

Next, update the portage tree:

root # ego sync
root # env-update
root # source /etc/profile

Installing ZFS userspace and bootloader

Installing the ZFS userspace tools and kernel modules

Install the ZFS packages and sync the portage tree, if required:

root # ego sync
root # emerge --ask sys-fs/zfs

Once it has successfully merged, add the following services to the boot runlevel of OpenRC:

root # rc-update add zfs-import boot
root # rc-update add zfs-mount boot

Add another two services to the default runlevel:

root # rc-update add zfs-share default
root # rc-update add zfs-zed default

Create a ZFS-friendly initramfs

The Funtoo stage3 includes a linux kernel and initramfs. The initramfs is designed to mount and start Funtoo Linux on a variety of file systems. The initramfs contained within the stage3 will not mount and start Funtoo in our ZFS storage pool. We must create an updated 'ZFS-friendly' initramfs.

Optional: Update to the latest No results:

root # emerge --oneshot sys-kernel/genkernel

Use genkernel to create an initramfs capable of mounting our ZFS Storage Pool via the --zfs switch. Adjust --makeopts according to the number of available threads:

root # genkernel initramfs --no-clean --no-mountboot --makeopts=-j4 --kernel-config=/usr/src/linux/.config --zfs
root ##g##* Funtoo Linux Genkernel; Version 3.4.40.11-funtoo##!g##
root ##g##*##!g## Running with options: initramfs --no-clean --no-mountboot --makeopts=-j4 --kernel-config=/usr/src/linux/.config --zfs

root ##g##*##!g## Linux Kernel 4.5.2-1 for x86_64...
root ##g##*##!g## .. with config file /usr/src/linux-debian-sources-4.5.2/.config
root ##g##*##!g## busybox: >> Using cache
root ##g##*##!g## initramfs: >> Initializing...
root ##g##*##!g##         >> Appending base_layout cpio data...
root ##g##*##!g##         >> Appending auxilary cpio data...
root ##g##*##!g##         >> Copying keymaps
root ##g##*##!g##         >> Appending busybox cpio data...
root ##g##*##!g##         >> Appending modules cpio data...
root ##g##*##!g##         >> Appending zfs cpio data...
cp: cannot stat ‘/etc/zfs/zdev.conf’: No such file or directory
root ##y##*##!y## Could not copy file /etc/zfs/zdev.conf for ZFS
root ##g##*##!g##         >> Appending blkid cpio data...
root ##g##*##!g##         >> Appending modprobed cpio data...
root ##g##*##!g##         >> Compressing cpio data (.xz)...

root ##y##*##!y## WARNING... WARNING... WARNING...
root ##y##*##!y## Additional kernel cmdline arguments that *may* be required to boot properly...
root ##y##*##!y## add "dozfs" for ZFS volume management support
root ##y##*##!y## add either "real_root=ZFS" (bootfs autodetection) or "real_root=ZFS=<dataset>" to boot from a ZFS dataset

root ##g##*##!g## Do NOT report kernel bugs as genkernel bugs unless your bug
root ##g##*##!g## is about the default genkernel configuration...
root ##g##*##!g## 
root ##g##*##!g## Make sure you have the latest ~arch genkernel before reporting bugs.

Confirm the presence of the new initramfs:

root # ls /boot/*genkernel*
/boot/initramfs-genkernel-x86_64-4.5.2-1

Grub expects the initramfs filename to be of the form: initramfs-${KNAME}-${ARCH}-${KV}. This guide assumes the usage of debian-sources. Tailor it to your specific kernel name, platform, and kernel version. Forgetting to rename initramfs-genkernel to initramfs-debian-sources will render the system unbootable.

root # cd /boot
root # mv initramfs-genkernel-x86_64-4.5.2-1 initramfs-debian-sources-x86_64-4.5.2-1
root # ls /boot/*initramfs*
/boot/initramfs-debian-sources-x86_64-4.5.2-1

Installing GRUB 2

GRUB 2 must be built with support for ZFS Storage Pools on a single disk. This is achieved using the 'libzfs' USE flag.

root # echo "sys-boot/grub libzfs" >> /etc/portage/package.use
   Note

If you have defined GRUB_PLATFORMS in your /etc/portage/make.conf, please ensure that it includes 'pc': e.g. GRUB_PLATFORMS="efi-64 pc".

This is required for booting in BIOS (non-UEFI) mode, as described in this guide.

Now, install GRUB:

root # emerge grub

Configuring the Bootloader

When zpool created our storage pool (rpool), it created partitions under a GPT scheme. In order to boot Funtoo Linux on a GPT partion under legacy (BIOS) boot, sys-boot/grub requires a small partition, called a BIOS boot partition. By design, ZFS (zpool) left a very small unpartitioned space at the beginning of the disk. We will use sgdisk, which is part of sys-apps/gptfdisk, to format this free space into a BIOS boot partition.

root # sgdisk -a1 -n2:48:2047 -t2:EF02 -c2:"BIOS boot partition" /dev/disk/by-id/ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF

To avoid problems with GRUB, use partx to refresh the list of partitions that are 'seen' by the kernel. Do this for each drive (/dev/sda, /dev/sdb, etc.).

root # partx -u /dev/sda

A quick check to verify that GRUB 2 sees/supports ZFS:

root # touch /etc/mtab
root # grub-probe /
zfs

Installing GRUB2 to disk is as easy as:

root # grub-install /dev/disk/by-id/ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF
Installing for i386-pc platform.
Installation finished. No error reported.

Now, it's time for us to create grub's configuration file. First, we must edit a few GRUB 2 settings in /etc/default/grub:

   Important

The following is required to boot Funtoo Linux on ZFS!

Replace the line

   /etc/default/grub - before
#GRUB_CMDLINE_LINUX=""

with

   /etc/default/grub - after
GRUB_CMDLINE_LINUX="dozfs real_root=ZFS=rpool/ROOT/funtoo"

Now, create GRUB 2 configuration file:

root # grub-mkconfig -o /boot/grub/grub.cfg
Generating grub configuration file ...
Found linux image: /boot/kernel-debian-sources-x86_64-4.5.2-1
Found initrd image: /boot/initramfs-genkernel-x86_64-4.5.2-1
done

If grub-mkconfig cannot find the initrd image, manually add initrd to the generated /boot/grub/grub.cfg, below the linux line:

   /boot/grub/grub.cfg - adding initrd below the linux line
echo    'Loading Linux x86_64-4.5.2-1 ...'
linux   /ROOT/funtoo@/boot/kernel-debian-sources-x86_64-4.5.2-1 root=ZFS=rpool/ROOT/funtoo ro dozfs real_root=ZFS
echo    'Loading initial ramdisk ...'
initrd  /ROOT/funtoo@/boot/initramfs-debian-sources-x86_64-4.5.2-1

A quick check to verify that the GRUB ZFS module is in place:

root # ls /boot/grub/*/zfs.mod
/boot/grub/i386-pc/zfs.mod

Final configuration

Configure your network according to the main installation guide.

Set the root password.

(chroot) # passwd

Exit the chroot and export your ZFS storage pool.

(chroot) # exit
root # umount -lR {dev,proc,sys}
root # cd /
root # zpool export rpool

Restart to boot into Funtoo Linux on a ZFS root!

After reboot

Snapshot

Take a snapshot of your Funtoo at installation.

root # zfs snapshot rpool/ROOT/funtoo@install

The use of snapshots, including sending snapshots as a method of backup, are not covered in this guide. See Further Reading.

ZFS Adjustable Replacement Cache (ARC) size

The Adjustable Replacement Cache (ARC) is a fundamental part of ZFS. Refer to this article by Aaron Toponce for details on how to set up an ARC.

Without configuration, ZFS will use up to 50% of your memory (RAM) for the ARC. It is possible to change this maximum. There are different ways to achieve this on both a temporary and persistent basis. One such way is to create and edit the file /etc/modprobe.d/zfs.conf, which affects the ZFS kernel module.

   /etc/modprobe.d/zfs.conf - set maximum ARC size to 4 GiB
options zfs zfs_arc_max=4294967296

where zfs_arc_max is set to a value in Bytes. After configuring this file, re-generate the initramfs. Rebooting will then apply this change.

To apply this change immediately without a reboot, issue the command:

root #  echo 4294967296 >> /sys/module/zfs/parameters/zfs_arc_max

Reference: https://wiki.gentoo.org/wiki/ZFS#ARC

After Kernel or ZFS updates

The default Funtoo Linux kernel (sys-kernel/debian-sources) does not automatically build a ZFS-capable initramfs. Similarly, the package sys-fs/zfs and its dependencies do not automatically build a ZFS-capable initramfs.

After each kernel update, you must recreate an initramfs. Similarly, sys-fs/zfs updates also require you to regenerate an initramfs. This is especially true for updates to sys-fs/zfs that introduce new storage pool features. Neglecting to update your initramfs will make your system unbootable.

First, rebuild sys-fs/zfs, sys-fs/zfs-kmod and sys-kernel/spl:

root # emerge --ask --verbose -1 zfs zfs-kmod spl

Then, follow the earlier instructions to create a new initramfs:

root # genkernel initramfs --no-clean --no-mountboot --makeopts=-j4 --kernel-config=/usr/src/linux/.config --zfs
root # cd /boot
root # mv initramfs-genkernel-x86_64-4.5.2-1 initramfs-debian-sources-x86_64-4.5.2-1

Finally, repeat the earlier instructions for generating /boot/grub/grub.cfg and manually adding the new initramfs as initrd to the generated /boot/grub/grub.cfg.

Further Reading

ZFS has many interesting features not covered by this guide.

Useful information and instructions can be found in the online reference manuals. See man zpool and man zfs.

Aaron Toponce's Zpool/ZFS Administration Guides - https://pthree.org/2012/12/04/zfs-administration-part-i-vdevs

ZFS on Linux - http://www.zfsonlinux.org

ZFS - Gentoo Wiki - https://wiki.gentoo.org/wiki/ZFS

Troubleshooting

Forgot to reset password?

You will need to chroot into your Funtoo on ZFS root installation if you forgot to set the root password. Repeat the earlier instructions to load the the live CD/USB, including the installation of ZFS kernel modules.

When the ZFS kernel modules are loaded, your existing ZFS Storage Pool (rpool) will be imported automatically. This will also result in an attempt to mount the various ZFS filesystems that you created. Mounting your root partition (/) will fail since this location is not empty; / is allocated to the live CD/USB distribution!

root # zpool status
  pool: rpool
 state: ONLINE
  scan: none requested
config:

	NAME                                             STATE     READ WRITE CKSUM
	rpool                                            ONLINE       0     0     0
	  ata-Samsung_SSD_840_EVO_120GB_123456789ABCDEF  ONLINE       0     0     0

errors: No known data errors

To get around this issue, first, manually export the pool.

root # zpool export rpool
root # zpool list
no pools available

Now, import your storage pool using the following command.

root # zpool import -o cachefile=/tmp/zpool.cache -R /mnt/funtoo -d /dev/disk/by-id/ rpool

This will import rpool and place your Funtoo install at /mnt/funtoo. Follow the earlier set of instructions to chroot into your Funtoo Installation on ZFS root.

Will not mount on first reboot?

Follow the above instructions on "Forgot to reset password?" to import and mount your storage pool (rpool) and chroot back into your Funtoo environment.

Things to check:

  • Was the bootfs property of rpool set? Use zpool get bootfs rpool to check
  • Was /tmp/zpool.cache copied into /mnt/funtoo/etc/zfs/ prior to chroot and creating the initramfs?
  • Was genkernel initramfs run with the --zfs switch and --kernel-config pointing to the correct configuration file?
  • Was GRUB installed and configured correctly?

rpool is 'busy' on zpool export

This happens when swapon is used. Swap must be turned off to free the pool for export.

Unable to add universe repository in Ubuntu?

See http://askubuntu.com/questions/761592/unable-to-apt-get-dist-upgrade-on-a-persistent-ubuntu-16-04-usb