Difference between revisions of "Funtoo:Metro/pt-br"

From Funtoo
Jump to navigation Jump to search
(Updating to match new version of source page)
Tag: Replaced
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<languages/>
{{Project
|summary=This project is focused on {{c|metro}}, the framework used to create new Funtoo Linux builds.
|leads=Drobbins
|subpages=Initial Setup, Manual Setup, Concepts and Terminology, Configuring Metro, Recipes, Automation, Data Model
|translate=yes
}}
<div class="mw-translate-fuzzy">
{{#layout:doc}}{{#widget:AddThis}}[[Metro]] é o sistema de compilação dos stages para Funtoo Linux e [[Gentoo Linux]]. Ele automatiza o processo de bootstrapping.
{{#layout:doc}}{{#widget:AddThis}}[[Metro]] é o sistema de compilação dos stages para Funtoo Linux e [[Gentoo Linux]]. Ele automatiza o processo de bootstrapping.
Este tutorial te guiará pela instalação, configuração e execução do [[Metro]].
Outra [[:Category:Metro|Documentação do Metro]] está disponível.
= Prefácio =
== Como o Metro Funciona ==
Metro é o sistema de compilação automatizado do Funtoo Linux, e é usado para compilar os stages do Funtoo Linux.
[[Metro]] não cria um stage do nada. Para compilar um novo stage, [[Metro]] deve usar um stage já existente chamado "seed" stage. Este seed stage tipicamente é usado como ''ambiente de compilação'' para criar o stage que queremos.
[[Metro]] pode usar dois tipos de seed stages. Tradicionalmente, [[Metro]] usa um stage3 como seed stage. Esse stage3 é então usado para compilar um novo stage1, que por sua vez é usado para compilar um novo stage2, e em seguida um novo stage3. No geral, este método é o mais confiável para compilação do [[Gentoo Linux]] ou Funtoo Linux, sendo assim essa é a abordagem recomendada.
{{fancyimportant|'''Após trocar as compilações do metro para o perfil do Funtoo, os stages do Gentoo não serão mais fornecidos'''!}}
== Seeds e Isolamento da Compilação ==
Outro conceito importante a se mencionar aqui é algo chamado ''isolamento de compilação''. Pelo fato de o [[Metro]] criar um ambiente de compilação isolado, e esse ambiente é explicitamente definido usando entidades tangíveis e existentes -- um seed stage e um snapshot do portage -- você terá resultados consistentes e repetíveis. Em outras palavras, o mesmo seed stage, snapshot do portage e instruções de compilação irão gerar um resultado essencialmente idêntico, mesmo que você efetue a compilação um mês depois em outra máquina.
== Compilação Local ==
Digamos que você queira compilar um stage3 para um <tt>pentium4</tt>. O método recomendado para fazer isso seria pegar um stage3 para <tt>pentium4</tt> para usar como seu seed stage. Será dito ao [[Metro]] para usar este stage3 existente para compilar um novo stage1 para esse mesmo <tt>pentium4</tt>. Para esse processo, o stage3 genérico para <tt>pentium4</tt> iria prover o ''ambiente de compilação'' para criar noss novo stage1. Então, o novo stage1 serviria de ambiente de compilação para criar o novo stage2 para <tt>pentium4</tt>. E o novo stage2 para <tt>pentium4</tt> serviria de ambiente de compilação para criar o novo stage3 para <tt>pentium4</tt>.
Na terminologia do [[Metro]] isto é chamado de '''compilação local''', que significa que um stage3 de uma dada arquitetura é usado para semear ('''seed''') uma nova compilação dessa mesma arquitetura. A propósito, esse será o primeiro exercício que faremos nesse tutorial.
Uma semana depois, você pode querer compilar um novo stage3 para <tt>pentium4</tt>. Em vez de começar pelo stage3 original para <tt>pentium4</tt> novamente, provavelmente você teria de configurar o [[Metro]] para usar a compilação mais recente do stage3 para <tt>pentium4</tt> como seed. [[Metro]] tem uma funcionalidade embutida par facilitar isso, permitindo encontrar facilmente a versão mais recente do stage3 seed disponível.
== Compilação Remota ==
[[Metro]] pode também realizar uma '''compilação remota''', onde um stage3 de uma arquitetura diferente, porém com binários compatíveis,é usada como seed para compilar um stage3 de arquitetura diferente. Consequentemente o segundo exercício que iremos fazer neste tutorial será para compilar um stage3 para um <tt>core2 32bit</tt> a partir de um stage3 para <tt>pentium4</tt> que acabamos de compilar.
TODO: adicionar embargos sobre quais arquiteturas podem ser semeadas (seeded) e quais não podem (uma tabela talvez?)
== Compilação Adaptada ==
Por último, é também válido notar que tanto em compilações <tt>locais</tt> e <tt>remotas</tt>, [[Metro]] pode ser configurado para adicionar e/ou remover pacotes individuais do arquivo final.
Digamos que você não viva sem <tt>app-misc/screen</tt>, no fim deste tutorial, iremos mostrar como ter seu stage3 adaptado para incluí-lo.
== Instalando o Metro ==
'''O método recomendado e suportado''' é usar o repositório do [[Metro]] no Git. 
Garanta que {{Package|dev-vcs/git}} e {{Package|dev-python/boto}} (opcional; requerido para suporte a EC2) estão instalados em seu sistema:
<console>
# ##i##emerge dev-vcs/git
# ##i##emerge dev-python/boto
</console>
Em seguida, clone o o branch master do repositório desta maneira:
<console>
# ##i##cd /root
# ##i##git clone git://github.com/funtoo/metro.git
# ##i##cp /root/metro/metro.conf ~/.metro
</console>
Agora você terá uma pasta chamada <tt>/root/metro</tt> que contém o código fonte do [[Metro]].
Metro agora está instalado. É hora de customizá-lo para seu sistema local.
= Configurando o Metro =
{{Note|Metro atualmente não pode compilar stages do Gentoo. Veja {{Bug|FL-901}}.}}
[[User:Drobbins|Daniel Robbins]] mantém o [[Metro]], então ele vem pré-configurado para compilar lançamentos do Funtoo Linux. Antes de ler mais, você pode querer customizar algumas configurações básicas como o número de processos concorrentes que se ajustem ao seu hardware ou a pasta que receberá os stages produzidos. Isto é feito editando <tt>~/.metro</tt> que é o arquivo mestre de configuração do [[Metro]].
Note que <code>path/install</code> deve apontar para onde o metro foi instalado. Aponte <code>path/distfiles</code> para onde seus distfiles residem. Defina também <code>path/mirror/owner</code> e <code>path/mirror/group</code> para o proprietário e grupo de todos os arquivos que serão escritos na pasta de repositório de compilações, que por padrão (pelo arquivo de configuração) está em <code>/home/mirror/funtoo</code>. O diretório de cache normalmente reside dentro da pasta temp -- isso não pode ser modificado como quiser. O diretório de cache pode acabar tendo muitos pacotes .tbz2 armazenados, e consumir muito armazenamento. Você pode querer colocar o diretório temporário em um armazenamento mais rápido, para compilações mais rápidas, e o cache em um mais lento, porém com mais espaço.
{{file|name=.metro|desc=Configuração do Metro |body=
# Arquivo de configuração do Metro - essas configurações precisam ser adaptadas para sua instalação:
[section path]
install: /root/metro
tmp: /var/tmp/metro
cache: $[path/tmp]/cache
distfiles: /var/src/distfiles
work: $[path/tmp]/work/$[target/build]/$[target/name]
[section path/mirror]
: /home/mirror/funtoo
owner: root
group: repomgr
dirmode: 775
[section portage]
MAKEOPTS: auto
[section emerge]
options: --jobs=4 --load-average=4 --keep-going=n
<div class="mw-translate-fuzzy">
# Esta linha não deve ser modificada:
[collect $[path/install]/etc/master.conf]
}}
</div>
</div>


== Arquitetura e Subarquitetura ==
Metro is the tool used by Funtoo Linux to build new releases of Funtoo Linux. It is also available to the public and can be used to build custom versions of Funtoo Linux, or used by developers to perform build testing. This page documents how to install, configure and use Metro. Also note that there is various additional supplemental documentation available on sub-pages, with links above.
 
No exemplo a seguir estaremos criando um stage3 para pentium4 compilado para compatibilidade binária com x86-32bit. Pentium4 é uma subarquitetura da arquitetura x86-32bit. Uma vez que você tenha o Metro instalado irá encontrar uma lista completa de cada subarquitetura na pasta <tt>/root/metro/subarch</tt> e cada uma terá a extensão .spec
Exemplo:
<console>
###i## ls /root/metro/subarch
# ls subarch/
amd64-bulldozer-pure64.spec  armv7a.spec          core-avx-i.spec        i686.spec        pentium.spec
amd64-bulldozer.spec        armv7a_hardfp.spec  core2_32.spec          k6-2.spec        pentium2.spec
amd64-k10-pure64.spec        athlon-4.spec        core2_64-pure64.spec    k6-3.spec        pentium3.spec
amd64-k10.spec              athlon-mp.spec      core2_64.spec          k6.spec          pentium4.spec
amd64-k8+sse3.spec          athlon-tbird.spec    corei7-pure64.spec      native_32.spec    pentiumpro.spec
amd64-k8+sse3_32.spec        athlon-xp.spec      corei7.spec            native_64.spec    prescott.spec
amd64-k8-pure64.spec        athlon.spec          generic_32.spec        niagara.spec      ultrasparc.spec
amd64-k8.spec                atom_32.spec        generic_64-pure64.spec  niagara2.spec    ultrasparc3.spec
amd64-k8_32.spec            atom_64-pure64.spec  generic_64.spec        nocona.spec      xen-pentium4+sse3.spec
armv5te.spec                atom_64.spec        generic_sparcv9.spec    opteron_64.spec  xen-pentium4+sse3_64.spec
armv6j.spec                  btver1.spec          geode.spec              pentium-m.spec
armv6j_hardfp.spec          btver1_64.spec      i486.spec              pentium-mmx.spec
</console>
 
= Primeiros stages (compilação local) =
 
Para iniciar todo o processo, precisamos fazer um bootstrap baixando um stage3 de seed para a compilação e colocá-lo em seu lugar adequado em <tt>/home/mirror/funtoo</tt>, assim o [[Metro]] pode encontrá-lo. Precisaremos também criar alguns arquivos &quot;control&quot; em <tt>/home/mirror/funtoo</tt>, que permitirá ao [[Metro]] entender como deve proceder.
 
== Passo 1: Configurar o repositório pentium4 (compilação local) ==
 
Assumindo que estamos seguindo os passos básicos traçados na seção anterior, e criando uma compilação instável do Funtoo (<tt>funtoo-current</tt>) para <tt>pentium4</tt>, usando um stage3 <tt>pentium4</tt> genérico como seed, então aqui está o primeiro conjunto de passos que faremos:
 
<console>
# ##i##install -d /home/mirror/funtoo/funtoo-current/x86-32bit/pentium4
# ##i##install -d /home/mirror/funtoo/funtoo-current/snapshots
# ##i##cd /home/metro/mirror/funtoo/funtoo-current/x86-32bit/pentium4
# ##i##install -d 2011-12-13
# ##i##cd 2011-12-13
# ##i##wget -c http://ftp.osuosl.org/pub/funtoo/funtoo-current/x86-32bit/pentium4/2011-12-13/stage3-pentium4-funtoo-current-2011-12-13.tar.xz
# ##i##cd ..
# ##i##install -d .control/version
# ##i##echo "2011-12-13" > .control/version/stage3
# ##i##install -d .control/strategy
# ##i##echo local >  .control/strategy/build
# ##i##echo stage3 > .control/strategy/seed
</console>
 
OK, vamos revisar os passos acima. Primeiro, criamos o diretório <tt>/home/mirror/funtoo/funtoo-current/x86-32bit/pentium4</tt>, que é onde o Metro espera encontrar as compilações instáveis do <tt>funtoo-current</tt> para pentium4 -- ele é configurado para procurar aqui por padrão. Então criamos um diretório nomeado especialmente para abrigar nosso stage3 de seed para x86. Novamente, por padrão, Metro espera que o diretório seja nomeado dessa maneira. Entramos neste diretório, e baixamos nosso seed x86 de funtoo.org. Note que o selo de versão <tt>2010-12-24</tt> confere. Certifique-se de que seu nome de diretório está de acordo com o nome do stage3 também. Tudo foi configurado para bater com a configuração padrão do layout de partições do Metro.
 
Agora, voltemos ao diretório <tt>/home/mirror/metro/funtoo-current/x86-32bit/pentium4</tt> e, dentro dele, criaremos um diretório <tt>.control</tt>. Este diretório e seus subdiretórios contém arquivos especiais que o Metro referencia para determinar certos aspectos de seu comportamento. O arquivo <tt>.control/version/stage3</tt> é usado pelo Metro para rastrear o stage3 mais recentemente compilado para esta compilação em particular e esta subarquitetura. O Metro vai automaticamente atualizar este arquivo com o selo de versão mais recente após ele ter compilado um novo stage3 com sucesso. Contudo pelo fato do Metro não ter ''compilado'' realmente este stage3, precisamos configurar o arquivo <tt>.control/version/stage3</tt> manualmente. Isto possibilitará ao Metro encontrar nosso stage3 baixado quando configurarmos nossa compilação pentium4 para usá-lo como um seed. Perceba também que o Metro irá criar um arquivo similar ao <tt>.control/version/stage1</tt> após compilar com sucesso um stage1 pentium4 funtoo-current.
 
Nós também configuramos os arquivos <tt>.control/strategy/build</tt> e <tt>.control/strategy/seed</tt> com os valores <tt>local</tt> e <tt>stage3</tt> respectivamente. Estes arquivos definem a estratégia de compilação que o Metro usará quando compilarmos os stages pentium4 funtoo-current. Com uma nova estratégia de <tt>local</tt>, Metro irá suprir sua stage seed da funtoo-current pentium4, o diretório atual. E com uma estratégia de seed do <tt>stage3</tt>, o Metro usará um stage3 como seed, e usarará este seed para compilar um novo stage1, stage2 and stage3.
 
== Passo 2: Compilando os stages pentium4 ==
 
A propósito, se tudo que você quis fazer até agora foi construir um novo stage1/2/3 funtoo-current (e templates openvz e  vserver). Você começaria o processo digitando:
 
<console>
# ##i##cd /root/metro
# ##i##scripts/ezbuild.sh funtoo-current pentium4
</console>
 
Se você possui uma máquina, isso pode levar várias horas para ser completado por que muito componentes "pesados" como o gcc ou glibc tem que ser recompilado em cada stage. Uma vez que um stage tem sido completado com sucesso, ele é colocado no subdiretório <tt>"${METRO_MIRROR}/funtoo-current/x32-bit/pentium4/YYYY-MM-DD"</tt> , onde <tt>YYYY-MM-DD</tt> é a data de hoje no tempo que o script <tt>ezbuild.sh</tt> começou ou a data que você colocou na linha de comando do ezscript.sh.
 
= Compilando para outra arquitetura com binário compatível (compilação remota) =
 
As written above, [[Metro]] is able to perform '''remote build''' building different architecture stage3 from a binary compatible seeding stage3 (e.g. using a pentium4 stage3 to seed a <tt>Intel Core2 32bits</tt> stage3).
 
In the Metro terminology this is called a '''remote build''' (a stage 3 of a different, but binary compatible, architecture is used as a seed).
What's not compatible? You can't use a <tt>Sparc</tt> architecture to generate an <tt>x86</tt> or <tt>ARM</tt> based stage and vice-versa. If you use a 32bit stage then you don't want to seed a 64bit build from it. Be sure that you are using a stage from the same architecture that you are trying to seed. Check [http://ftp.osuosl.org/pub/funtoo/funtoo-current/ Funtoo-current FTP Mirror] for a stage that is from the same Architecture that you will be building. 
 
{{Note|Often, one build (ie. funtoo-current) can be used as a seed for another build such as funtoo-stable. However, hardened builds require hardened stages as seeds in order for the build to complete successfully.}}
 
== Step 1: Set up Core_2 32bit repository ==
 
In this example, we're going to use this pentium4 funtoo-current stage3 to seed a new Core_2 32bit funtoo-current build. To get that done, we need to set up the pentium4 build directory as follows:
 
<console>
# ##i## cd /home/mirror/funtoo/funtoo-current/x86-32bit
# ##i##install -d core2_32
# ##i##cd core2_32
# ##i##install -d .control/strategy
# ##i##echo remote > .control/strategy/build
# ##i##echo stage3 > .control/strategy/seed
# ##i##install -d .control/remote
# ##i##echo funtoo-current > .control/remote/build
# ##i##echo x86-32bit > .control/remote/arch_desc
# ##i##echo pentium4 > .control/remote/subarch
</console>
 
The steps we follow are similar to those we performed for a ''local build'' to set up our pentium4 directory for local build. However, note the differences. We didn't download a stage, because we are going to use the pentium4 stage to build a new Core_2 32bit stage. We also didn't create the <tt>.control/version/stage{1,3}</tt> files because Metro will create them for us after it successfully builds a new stage1 and stage3. We are still using a <tt>stage3</tt> seed strategy, but we've set the build strategy to <tt>remote</tt>, which means that we're going to use a seed stage that's not from this particular subdirectory. Where are we going to get it from? The <tt>.control/remote</tt> directory contains this information, and lets Metro know that it should look for its seed stage3 in the <tt>/home/mirror/funtoo/funtoo-current/x86-32bit/pentium4</tt> directory. Which one will it grab? You guessed it -- the most recently built ''stage3'' (since our seed strategy was set to <tt>stage3</tt>) that has the version stamp of <tt>2010-12-24</tt>, as recorded in <tt>/home/mirror/funtoo-current/x86-32bit/pentium4/.control/version/stage</tt>. Now you can see how all those control files come together to direct Metro to do the right thing.


{{Note|<code>arch_desc</code> should be set to one of: <code>x86-32bit</code>, <code>x86-64bit</code> or <code>pure64</code> for PC-compatible systems. You must use a 32-bit build as a seed for other 32-bit builds, and a 64-bit build as a seed for other 64-bit builds.}}
Please see [[{{FULLPAGENAME}}/Initial Setup|Initial Setup]] for instructions on how to get Metro up and running on your system.
 
== Step 2: Building the Core_2 32bit stages ==
 
Now, you could start building your new Core_2 32bit stage1/2/3 (plus openvz and vserver templates) by typing the following:
 
<console>
# ##i##/root/metro/scripts/ezbuild.sh funtoo-current core2_32
</console>
 
In that case, the produced stages are placed in the <tt>/home/mirror/funtoo/funtoo-current/x32-bit/core2_32/YYYY-MM-DD</tt> subdirectory.
 
== Step 3: The Next Build ==
 
At this point, you now have a new Core_2 32bit stage3, built using a "remote" pentium4 stage3. Once the first remote build completes successfully, metro will automatically change <code>.control/strategy/build</code> to be <code>local</code> instead of <code>remote</code>, so it will use the most recently-built Core_2 32bit stage3 as a seed for any new Core_2 32bit builds from now on.
 
= Build your own tailored stage3 =
 
Metro can be easily configured for building custom stage3 by including additional packages. Edit the following configuration file <tt>/root/metro/etc/builds/funtoo-current/build.conf</tt>:
{{file|name=funtoo-current/build.conf|body=
[collect ../../fslayouts/funtoo/layout.conf]
 
[section release]
 
author: Daniel Robbins <drobbins@funtoo.org>
 
[section target]
 
compression: xz
 
[section portage]
 
FEATURES:
SYNC: $[snapshot/source/remote]
USE:
 
[section profile]
 
format: new
path: gentoo:funtoo/1.0/linux-gnu
arch: $[:path]/arch/$[target/arch_desc]
build: $[:path]/build/current
flavor: $[:path]/flavor/core
mix-ins:
 
[section version]
 
python: 2.7
 
[section emerge]
 
 
[section snapshot]
 
type: live
compression: xz
 
[section snapshot/source]
 
type: git
branch: funtoo.org
# branch to have checked out for tarball:
branch/tar: origin/master
name: ports-2012
remote: git://github.com/funtoo/ports-2012.git
options: pull
 
[section metro]
 
options:
options/stage: cache/package
target: gentoo
 
[section baselayout]
 
services: sshd
 
[section multi]
 
snapshot: snapshot
 
[section files]
 
motd/trailer: [
 
>>> Send suggestions, improvements, bug reports relating to...
 
>>> This release:                  $[release/author]
>>> Funtoo Linux (general):        Funtoo Linux (http://www.funtoo.org)
>>> Gentoo Linux (general):        Gentoo Linux (http://www.gentoo.org)
]
 
[collect ../../multi-targets/$[multi/mode:zap]]
}}
 
= Building Gentoo stages =
 
Metro can also build Gentoo stages.  After switching to Funtoo profile, see http://www.funtoo.org/Funtoo_Profiles metro require additional steps for this. We have an open bug for this -- it is simply due to the fact that we focus on ensuring Funtoo Linux builds and building Gentoo is a lower priority. Historical note: Funtoo Linux originally started as a fork of Gentoo Linux so that metro could reliably build Gentoo stages.
http://www.funtoo.org/Funtoo_Profiles
 
= Advanced Features =
 
Metro also includes a number of advanced features that can be used to automate builds and set up distributed build servers. These features require you to {{c|emerge sqlalchemy}}, as SQLite is used as a dependency.
 
== Repository Management ==
 
Metro includes a script in the {{c|scripts}} directory called {{c|buildrepo}}. Buildrepo serves as the heart of Metro's advanced repository management features.
 
=== Initial Setup ===
 
To use {{c|buildrepo}}, you will first need to create a {{f|.buildbot}} configuration file. Here is the file I use on my AMD Jaguar build server:
 
{{file|name=/root/.buildbot|lang=python|body=
builds = (
"funtoo-current",
"funtoo-current-hardened",
"funtoo-stable",
)
 
arches = (
"x86-64bit",
"pure64"
)
 
subarches = (
"amd64-jaguar",
"amd64-jaguar-pure64",
)
 
def map_build(build, subarch, full, full_date):
# arguments refer to last build...
if full == True:
buildtype =  ( "freshen", )
else:
buildtype =  ("full", )
return buildtype
}}
 
This file is actually a python source file that defines the tuples {{c|builds}}, {{c|arches}} and {{c|subarches}}. These variables tell {{c|buildrepo}} which builds, arches and subarches it should manage. A {{c|map_build()}} function is also defined which {{c|buildbot}} uses to determine what kind of build to perform. The arguments passed to the function are based on the last successful build. The function can read these arguments and return a string to define the type of the next build. In the above example, the {{c|map_build()}} function will cause the next build after a freshen build to be a full build, and the next build after a full build to be a freshen build, so that the build will alternate between full and freshen.
 
== Automated Builds ==
 
Once the {{c|.buildbot}} file has been created, the {{c|buildrepo}} and {{c|buildbot.sh}} tools are ready to use. Here's how they work. These tools are designed to keep your repository ({{c|path/mirror}} in {{f|/root/.metro}} up-to-date by inspecting your repository and looking for stages that are out-of-date.
 
To list the next build that will be performed, do this -- this is from my ARM build server:
 
{{console|body=
# ##i##./buildrepo nextbuild
build=funtoo-current
arch_desc=arm-32bit
subarch=armv7a_hardfp
fulldate=2015-02-08
nextdate=2015-02-20
failcount=0
target=full
extras=''
}}
 
If no output is displayed, then all your builds are up-to-date.
 
To actually run the next build, run {{c|buildbot.sh}}:
 
{{console|body=
# ##i##./buildbot.sh
}}
 
If you're thinking that {{c|buildbot.sh}} would be a good candidate for a cron job, you've got the right idea!
 
=== List Builds ===
 
To get a quick look at our repository, let's run the {{c|buildrepo fails}} command:
 
{{console|body=
# ##i##./buildrepo fails
  0  2015-02-18 /home/mirror/funtoo/funtoo-current/x86-64bit/amd64-jaguar
  0  2015-02-18 /home/mirror/funtoo/funtoo-current/pure64/amd64-jaguar-pure64
  0  2015-02-18 /home/mirror/funtoo/funtoo-current-hardened/x86-64bit/amd64-jaguar
  0  2015-02-18 /home/mirror/funtoo/funtoo-current-hardened/pure64/amd64-jaguar-pure64
  0  2015-02-18 /home/mirror/funtoo/funtoo-stable/x86-64bit/amd64-jaguar
  0  2015-02-18 /home/mirror/funtoo/funtoo-stable/pure64/amd64-jaguar-pure64
}}
 
On my AMD Jaguar build server, on Feb 20, 2015, this lists all the builds that {{c|buildrepo}} has been configured to manage. The first number on each line is a '''failcount''', which is the number of consecutive times that the build has failed. A zero value indicates that everything's okay. The failcount is an important feature of the advanced repository management features. Here are a number of behaviors that are implemented based on failcount:
 
* If {{c|buildbot.sh}} tries to build a stage and the build fails, the failcount is incremented.
* If the build succeeds for a particular build, the failcount is reset to zero.
* Builds with the lowest failcount are prioritized by {{buildrepo}} to build next, to steer towards builds that are more likely to complete successfully.
* Once the failcount reaches 3 for a particular build, it is removed from the build rotation.
 
=== Resetting Failcount ===
 
If a build has issues, the failcount for a build will reach 3, at which point it will be pulled out of build rotation. To clear failcount, so that these builds are attempted again -- possibly fixed by new updates to the Portage tree -- use {{c|buildrepo zap}}:
 
{{console|body=
# /root/metro/scripts/buildrepo zap
Removing /mnt/data/funtoo/funtoo-current/arm-32bit/armv7a_hardfp/.control/.failcount...
Removing /mnt/data/funtoo/funtoo-current/arm-32bit/armv6j_hardfp/.control/.failcount...
Removing /mnt/data/funtoo/funtoo-current/arm-32bit/armv5te/.control/.failcount...
}}
 
== Repository Maintenance ==
 
A couple of repository maintenance tools are provided:
 
* {{c|buildrepo digestgen}} will generate hash files for the archives in your repository, and clean up stale hashes.
* {{c|buildrepo index.xml}} will create an index.xml file at the root of your repository, listing all builds available.
* {{c|buildrepo clean}} will output a shell script that will remove old stages. No more than the three most recent stage builds for each build/arch/subarch are kept.
 
== Distributed Repositories ==
 
In many situation, you will have a number of build servers, and each will build a subset of your master repository, and then upload builds to the master repository. This is an area of Metro that is being actively developed. For now, automated upload functionality is not enabled, but is expected to be implemented in the relatively near future. However, it is possible to have your master repository differentiate between subarches that are built locally, and thus should be part of that system's {{c|buildbot}} build rotation, and those that are stored locally and built remotely. These builds should be cleaned when {{c|buildrepo clean}} is run, but should not enter the local build rotation. To set this up, modify {{f|/root/.buildbot}} and use the {{c|subarches}} and {{c|all_subarches}} variables:
 
{{file|name=/root/.metro|desc=Excerpt of .metro config for master repository|body=
# subarches we are building locally:
 
subarches = (
        "pentium4",
        "athlon-xp",
        "corei7",
        "corei7-pure64",
        "generic_32",
        "i686",
        "amd64-k8",
        "amd64-k8-pure64",
        "core2_64",
        "core2_64-pure64",
        "generic_64",
        "generic_64-pure64",
)
 
# Things we need to clean, even if we may not be building:
 
all_subarches = subarches + (
        "atom_32",
        "atom_64",
        "atom_64-pure64",
        "amd64-k10",
        "amd64-k10-pure64",
        "amd64-bulldozer",
        "amd64-bulldozer-pure64",
        "amd64-steamroller",
        "amd64-steamroller-pure64",
        "amd64-piledriver",
        "amd64-piledriver-pure64",
        "amd64-jaguar",
        "amd64-jaguar-pure64",
        "intel64-haswell",
        "intel64-haswell-pure64",
        "intel64-ivybridge-pure64",
        "intel64-ivybridge",
        "armv7a_hardfp",
        "armv6j_hardfp",
        "armv5te"
)
}}


[[Category:HOWTO]]
[[Category:HOWTO]]
[[Category:Metro]]
[[Category:Metro]]
__TOC__
__TOC__
[[Category:Official Documentation]]
{{ProjectFooter}}

Latest revision as of 01:38, October 11, 2022

Other languages:
English • ‎Türkçe • ‎português do Brasil • ‎日本語
   Summary
This project is focused on metro, the framework used to create new Funtoo Linux builds.
   People
Leads

Warning: Display title "Funtoo Metro/pt-br Project" overrides earlier display title "Metro".

{{#layout:doc}}Metro é o sistema de compilação dos stages para Funtoo Linux e Gentoo Linux. Ele automatiza o processo de bootstrapping.

Metro is the tool used by Funtoo Linux to build new releases of Funtoo Linux. It is also available to the public and can be used to build custom versions of Funtoo Linux, or used by developers to perform build testing. This page documents how to install, configure and use Metro. Also note that there is various additional supplemental documentation available on sub-pages, with links above.

Please see Initial Setup for instructions on how to get Metro up and running on your system.