The Funtoo Linux project has transitioned to "Hobby Mode" and this wiki is now read-only.
Difference between revisions of "Funtoo Linux Installation on RPI"
Line 93: | Line 93: | ||
###i## git clone --depth 1 https://github.com/RPi-Distro/firmware-nonfree ${KERNEL_WORK}/firmware-nonfree | ###i## git clone --depth 1 https://github.com/RPi-Distro/firmware-nonfree ${KERNEL_WORK}/firmware-nonfree | ||
###i## git --git-dir=${KERNEL_WORK}/firmware-nonfree/.git --work-tree=${KERNEL_WORK}/firmware-nonfree pull origin | ###i## git --git-dir=${KERNEL_WORK}/firmware-nonfree/.git --work-tree=${KERNEL_WORK}/firmware-nonfree pull origin | ||
###i## mkdir -p ${SYSROOT}/lib/firmware | ###i## mkdir -p ${SYSROOT}/lib/firmware | ||
###i## cp -r ${KERNEL_WORK}/firmware-nonfree/brcm | ###i## cp -r ${KERNEL_WORK}/firmware-nonfree/brcm ${SYSROOT}/lib/firmware | ||
}} | }} | ||
Revision as of 19:23, May 20, 2019
Introduction
This is an extension and amplification of Funtoo_Linux_Installation_on_ARM. It attempts to systematize and automate as much as possible of steps required to get Funtoo running on the 32 bit ARM Raspberry Pi device.
This is an update of Crossdev_Automation, reflecting the changes needed to accomodate the new kits structure of Funtoo, and to clean up the scripting used for automation. The document will remain available for reference purposes.
Installation Overview
- #Create Your Installation Settings
- #Install the Stage 3 Tarball
- #Install the Firmware
- #Configure Your System
- #Install Binary Kernel, Modules and dtbs
- #Cross-compile Kernel, Modules and dtbs from Source
- #Use QEMU To chroot
- #Partition and Format an SDCard
- #Deploy Installation to SDCard
- #Transfer the SDCard to the Raspberry Pi and Boot
- #Enjoy!
Get the Bash Script (Or Not)
If You Want to Try the Script
Development code to automate completely the process of installing is available on github. The structure of the file sysroot.sh
should roughly correspond to the information contained here in this document. The script contains enough functionality to:
- get the latest stage3 tarball and verify its integrity
- install necessary open and closed source firmware
- configure the system:
- modify fstab to make a simple partition structure (no swap)
- set a root password interactively
- add appropriate services to default run level
- set up the software clock
- link to accelerated video libraries
- set boot parameters
- install a kernel
- rpi binary kernel, dtbs, and modules
- OR cross compile a kernel, modules and dtbs from source
- install QEMU and use binary translation to allow the use of chroot for further tweaking
- partition and format an sdcard
- copy the bootable configured stage3 to the sdcard
The script is designed to used on a machine that mounts the sdcard that will be used on the pi.
Too use the basic install functionality of the script, edit the config
file (pay attention to the SDCARD_DEV
variable) and then
root # source sysroot.sh && sysroot_install
Read the questions carefully and answer yes or no.
If You Want to Do it Yourself
Read the document here and follow the steps, referring sysroot.sh
to reassure yourself of the correctness of the installer script.
Create Your Installation Settings
Confguration your installation. These variables are referencecd by the sysroot.sh
script and by this document.
config
(bash source code) - Set your install configuration variablesKERNEL_WORK=/mnt/shared/rpi_kernel
RPI_KERN_BRANCH=rpi-4.14.y
SYSROOT_WORK=/mnt/shared/sysroots
STAGE3_URL=https://build.funtoo.org/1.3-release-std/arm-32bit/raspi3/2019-01-25/stage3-raspi3-1.3-release-std-2019-01-25.tar.xz
CHOST=armv7a-hardfloat-linux-gnueabi
CFLAGS="-O2 -pipe -march=armv7-a -mtune=cortex-a53 -mfpu=neon-vfpv4 -mfloat-abi=hard"
#SDCARD_DEV=mmcblk0p
SDCARD_DEV=sdb
INSTALL_VARS=(KERNEL_WORK RPI_KERN_BRANCH SYSROOT_WORK STAGE3_URL CHOST CFLAGS SDCARD_DEV)
Install the Stage 3 Tarball
Download the current Funtoo stage 3 build appropriate for your Raspberry Pi device. Check the Raspberry_Pi_(Version_3) page, to see the version available for versions 3 of the Pi. Here we download the version for version 3 by setting the STAGE_URL variable in our configuration file.
We need to save the archive to $STAGE3_ARCHIVE
and unpack it to $SYSROOT
. Back up or remove any previous work in that local.
root # export SYSROOT=$SYSROOT_WORK/$CHOST root # export STAGE3_ARCHIVE=/tmp/stage3-latest.tar.xz root # mv -n $SYSROOT $SYSROOT.old root # mkdir -p $SYSROOT root # wget ${STAGE_URL} -O ${STAGE3_ARCHIVE} root # tar xpfv ${STAGE3_ARCHIVE} -C ${SYSROOT}
Install the Firmware
Make your work directory and clone the official firmware repo into it. Copy the appropriate boot firmware files to the sysroot, along with the video acceleration binaries. If you want to use the wireless networking function, you need the bcrm firmware as well.
root # mkdir -p ${KERNEL_WORK} root # git clone --depth 1 git://github.com/raspberrypi/firmware/ ${KERNEL_WORK}/firmware root # cp ${KERNEL_WORK}/firmware/boot/{bootcode.bin,fixup*.dat,start*.elf} ${SYSROOT}/boot root # cp -r ${KERNEL_WORK}/firmware/hardfp/opt ${SYSROOT} root # git clone --depth 1 https://github.com/RPi-Distro/firmware-nonfree ${KERNEL_WORK}/firmware-nonfree root # git --git-dir=${KERNEL_WORK}/firmware-nonfree/.git --work-tree=${KERNEL_WORK}/firmware-nonfree pull origin root # mkdir -p ${SYSROOT}/lib/firmware root # cp -r ${KERNEL_WORK}/firmware-nonfree/brcm ${SYSROOT}/lib/firmware
Configure Your System
Here, we attempt to encapsulate the instructions from Funtoo_Linux_Installation_on_ARM. There are two ways to do this. Here we alter files and symlinks in $SYSROOT/etc
directly.
We could also chroot into $SYSROOT using QEMU as described below to install packages, edit files and use rc-update
directly to set up services.
Set Up Mount Points
Alter $SYSROOT/etc/fstab
as follows. We remove the swap, and alter the storage device name and partition file types. We also remove the /dev/cdrom
device.
No swap is configured. If you need to control out of memory conditions (e.g. when compiling chromium) you need to configure a swap parition or use No results. A partition must also be created and formatted on the device (probably on the sd card, but usb block memory devices can be used if necessary).
$SYSROOT/etc/fstab
/dev/mmcblk0p1 /boot vfat noauto,noatime 1 2
/dev/mmcblk0p2 / ext4 noatime 0 1
We can use the following No results code.
root # sed -i "s/\/dev\/sda1.*/\/dev\/mmcblk0p1 \/boot vfat defaults 0 2/" ${SYSROOT}/etc/fstab root # sed -i "s/\/dev\/sda2.*//" ${SYSROOT}/etc/fstab root # sed -i "s/\/dev\/sda3.*/\/dev\/mmcblk0p2 \/ ext4 defaults 0 1/" ${SYSROOT}/etc/fstab root # sed -i "s/\#\/dev\/cdrom.*//" ${SYSROOT}/etc/fstab
Set Up Root Password
Here we interactively add a root password to log in with to $SYSROOT/etc/shadow
.
root # sed -i "s|root\:\*|root\:`(openssl passwd -1)`|" $SYSROOT/etc/shadow
Set Up Networking
We add dhcpcd as a default runlevel service.
root # ln -sf /etc/init.d/dhcpcd ${SYSROOT}/etc/runlevels/default
Set Up SSH Access
If you want to ssh to the board as root, you need to allow it explicitly and we add sshd as a default runlevel service.
root # echo "PermitRootLogin yes" >> ${SYSROOT}/etc/ssh/sshd_config root # ln -sf /etc/init.d/sshd ${SYSROOT}/etc/runlevels/default
Set Up the Software Clock
Let's set up the software clock. This is Raspberry Pi specific, and due to its lack of a stock RTC chipset. This has ramifications for maintaining the correct time via a pacakge like No results.
root # ln -sf /etc/init.d/swclock ${SYSROOT}/etc/runlevels/boot root # rm ${SYSROOT}/etc/runlevels/boot/hwclock root # mkdir -p ${SYSROOT}/lib/rc/cache root # touch ${SYSROOT}/lib/rc/cache/shutdowntime
Disable Serial Console Access
Let's prevent serial consoles from spawning. If you have a need for this, you'll be able to set it up yourself.
root # sed -i "s/s0\:.*/\#&/" ${SYSROOT}/etc/inittab
Link to Accelerated Video Libraries
You must add /opt/vc/lib
to $LD_LIBRARY_PATH
in the shell, or use the env-update
functionality of Funtoo if you want to link against these firmware libraries. This is critical if you want to do any accelerated graphics or gpu level work.
Here we add an entry to the appropriate configuration file which env-update
will pick up whenever we source /etc/profile
.
root # echo "LDPATH=\"/opt/vc/lib\"" > ${SYSROOT}/etc/env.d/99vc
If you want to try building native vc4 acceleration with media-libs/mesa you must unmask the appropriate USE flags at the profile level and VIDEO_CARDS="vc4" in make.conf.
root # cat > /etc/portage/profile/portage.use.mask << EOF root ##i##media-libs/mesa -video_cards_vc4 root ##i##x11-libs/libdrm -video_cards_vc4 root ##i##EOF
If /var/log/Xorg.0.log
is flooded with messages of the following type:
(EE) modeset(0): Failed to get GBM bo for flip to new front. (EE) modeset(0): present flip failed
the workaround is to disable the PageFlip
parameter for the modesetting
driver.
To do this, as a root user create a file 20-displaylink.conf under /usr/share/X11/xorg.conf.d/ with the following content:
$SYSROOT/usr/share/X11/xorg.conf.d/20-displaylink.conf
Section "Device"
Identifier "DisplayLink"
Driver "modesetting"
Option "PageFlip" "false"
EndSection
Configure the Boot Parameters
root # cat > ${SYSROOT}/boot/cmdline.txt << EOF root ##i## dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait root ##i## EOF
Install Binary Kernel, Modules and dtbs
root # mkdir -p ${SYSROOT}/boot/overlays root # cp ${KERNEL_WORK}/firmware/boot/dts/*.dtb ${SYSROOT}/boot/ root # cp ${KERNEL_WORK}/firmware/boot/dts/overlays/*.dtb* ${SYSROOT}/boot/overlays/ root # cp ${KERNEL_WORK}/firmware/boot/dts/overlays/README ${SYSROOT}/boot/overlays/ root # cp ${KERNEL_WORK}/firmware/boot/kernel7.img ${SYSROOT}/boot/
Cross-compile Kernel, Modules and dtbs from Source
Install Crossdev
No results is a wonderful script for managing cross-compiling environments on Gentoo, but it is incompatible with Funtoo's improved gcc ebuilds. There is incomplete documentation of a pure Funtoo solution, but there has been no follow up on a complete implementation.
A simple solution is to create a local overlay named "crossdev", store gentoo ebuilds and patches in it, and use a crossdev command line switch to direct it to search the overlay for the appropriate ebuilds. This has the advantage of isolating all gentoo files and resulting binaries in a single directory.~
Please ensure that /etc/portage{package.keywords,package.mask,package.use}
are all directories.
Make a Local Overlay
Let's follow the directions from Local_Overlay, and remove the .git subdirectory.~
root # mkdir /var/git/overlay root # cd /var/git/overlay root # git clone https://github.com/funtoo/skeleton-overlay.git crossdev root # rm -rf /var/git/overlay/crossdev/.git root # echo "crossdev" > /var/git/overlay/crossdev/profiles/repo_name
Edit config files to match.
/etc/portage/repos.conf/crossdev.conf
- Add the crossdev overlay to portage[crossdev] location = /var/git/overlay/crossdev auto-sync = no priority = 10
Sparse Checkout Gentoo GCC Ebuilds
Let's make a sparse checkout of the main Gentoo repo.
root # cd /var/git/overlay/crossdev root # git init root # git remote add origin git://github.com/gentoo/gentoo.git root # git config core.sparseCheckout true root # echo "sys-devel/gcc" >> .git/info/sparse-checkout root # git pull --depth=1 origin master
Unmask and Emerge Crossdev
root # echo "sys-devel/crossdev **" >> /etc/portage/package.keywords/crossdev root # echo "=sys-devel/crossdev-99999999" >> /etc/portage/package.unmask/crossdev root # emerge crossdev
Install Cross Compilation Tool Chain
root # crossdev -S --ov-gcc /var/git/overlay/crossdev -t ${CHOST}
Retrive Raspberry Pi Kernel Sources
root # git clone https://github.com/raspberrypi/linux.git ${KERNEL_WORK}/linux
Clean and Update Kernel Sources
root # git --git-dir=${KERNEL_WORK}/linux/.git --work-tree=${KERNEL_WORK}/linux clean -fdx root # git --git-dir=${KERNEL_WORK}/linux/.git --work-tree=${KERNEL_WORK}/linux checkout master root # git --git-dir=${KERNEL_WORK}/linux/.git --work-tree=${KERNEL_WORK}/linux fetch --all root # git --git-dir=${KERNEL_WORK}/linux/.git --work-tree=${KERNEL_WORK}/linux branch -D ${RPI_KERN_BRANCH} root # git --git-dir=${KERNEL_WORK}/linux/.git --work-tree=${KERNEL_WORK}/linux checkout ${RPI_KERN_BRANCH}
Make the Default Config
The next set of make
commands take place in the kernel source directory.
root # cd ${KERNEL_WORK}/linux
There are many useful make targets to control kernel configs. In particular, the architecture specific ones are most useful in cross-compiling applications. You can see all available architecture specfic default configurations with the following command.
root # make -j$(nproc) \ root ##i## ARCH=arm \ root ##i## CROSS_COMPILE=${CHOST}- \ root ##i## make_defconfig_help root # Architecture specific targets (arm): ... <targets we don't need> ... acs5k_defconfig - Build for acs5k acs5k_tiny_defconfig - Build for acs5k_tiny am200epdkit_defconfig - Build for am200epdkit assabet_defconfig - Build for assabet at91_dt_defconfig - Build for at91_dt axm55xx_defconfig - Build for axm55xx badge4_defconfig - Build for badge4 root ##r##bcm2709_defconfig - Build for bcm2709 bcm2835_defconfig - Build for bcm2835 bcm_defconfig - Build for bcm bcmrpi_defconfig - Build for bcmrpi cerfcube_defconfig - Build for cerfcube clps711x_defconfig - Build for clps711x ...<lots o configs>... zeus_defconfig - Build for zeus zx_defconfig - Build for zx ...<more targets we don't need> ...
root # make -j$(nproc) \ root ##i## ARCH=arm \ root ##i## CROSS_COMPILE=${CHOST}- \ root ##i## bcm2709_defconfig
Configure the Kernel
root # make -j$(nproc) \ root ##i## ARCH=arm \ root ##i## CROSS_COMPILE=${CHOST}- \ root ##i## MENUCONFIG_COLOR=mono \ root ##i## menuconfig
Build and Install the Kernel
root # make -j$(nproc) \ root ##i## ARCH=arm \ root ##i## CROSS_COMPILE=${CHOST}- \ root ##i## zImage dtbs modules
root # make -j$(nproc) \ root ##i## ARCH=arm \ root ##i## CROSS_COMPILE=${CHOST}- \ root ##i## INSTALL_MOD_PATH=${SYSROOT} \ root ##i## modules_install
root # mkdir -p ${SYSROOT}/boot/overlays root ##i## cp arch/arm/boot/dts/*.dtb ${SYSROOT}/boot/ root ##i## cp arch/arm/boot/dts/overlays/*.dtb* ${SYSROOT}/boot/overlays/ root ##i## cp arch/arm/boot/dts/overlays/README ${SYSROOT}/boot/overlays/
root # scripts/mkknlimg arch/arm/boot/zImage ${SYSROOT}/boot/kernel7.img
Remove Kernel Headers and Source Links
root # rm ${SYSROOT}/lib/modules/`get_kernel_release`/{build,source}
Backup Kernel Config
root # mkdir -p ${SYSROOT}/etc/kernels root # cp -i ${KERNEL_WORK}/linux/.config ${SYSROOT}/etc/kernels
Use QEMU To chroot
No results relies upon KVM and the associated kernel module, called either kvm_intel
or kvm_amd
, depending on the architecture the kernel is running on. Please see KVM to find out how to get these kernel modules loaded and virtualization working.
Install a QEMU Chroot
root # echo "app-emulation/qemu static-user" > /etc/portage/package.use/qemu root # echo "dev-libs/libpcre static-libs" >> /etc/portage/package.use/qemu root # echo "sys-apps/attr static-libs" >> /etc/portage/package.use/qemu root # echo "dev-libs/glib static-libs" >> /etc/portage/package.use/qemu root # echo "sys-libs/zlib static-libs" >> /etc/portage/package.use/qemu root # echo "QEMU_SOFTMMU_TARGETS=\"arm\"" >> /etc/portage/make.conf root # echo "QEMU_SOFTMMU_TARGETS=\"\${QEMU_SOFTMMU_TARGETS} arm\"" >> /etc/portage/make.conf root # echo 'QEMU_USER_TARGETS="arm"' >> /etc/portage/make.conf root # echo 'QEMU_USER_TARGETS="${QEMU_USER_TARGETS} arm"' >> /etc/portage/make.conf root # emerge -q app-emulation/qemu root # quickpkg app-emulation/qemu root # ROOT=${SYSROOT}/ emerge -q --usepkgonly --oneshot --nodeps qemu
Example: Chroot with ARM Emulation
root # source sysroot.sh && sysroot_chroot $SYSROOT_WORK/$CHOST root # export PS1="(chroot) $PS1" (chroot) # ego profile === Enabled Profiles: === arch: arm-32bit build: current subarch: raspi3 flavor: core mix-ins: (not set) NOTE: Meta-repo has not yet been cloned, so no kit information is available. Type ego sync to perform an initial clone of meta-repo. (chroot) # ego sync (chroot) # exit
Example: Run a Shell Script in the ARM Chroot
root # cat > /tmp/shell_test.sh << EOF root ##i## #!/bin/sh root ##i## ego profile root ##i## EOF root # . sysroot.sh && sysroot_run_in_chroot $SYSROOT_WORK/$CHOST /tmp/shell_test.sh === Enabled Profiles: === arch: arm-32bit build: current subarch: raspi3 flavor: core mix-ins: (not set) === Python kit: === branch: 3.4-prime === All inherited flavor from core flavor: === minimal (from core flavor)
Partition and Format an SDCard
root # export SDCARD=/dev/SDCARD_DEV
Randomize SDCard
root # dd if=/dev/urandom of=${SDCARD} bs=1M status=progress
Write Parition Scheme to SDCard
root # umount -Rl ${SDCARD} root # sfdisk --no-reread --wipe always ${SDCARD} << EOF root ##i## label: dos root ##i## unit: sectors root ##i## ${SDCARD}1 : start= 2048, size= 1048576, type=c root ##i## ${SDCARD}2 : start= 1050624, type=83 root ##i## EOF
Format SDCard
Make sure you have No results installed.
root # mkfs.ext4 ${SDCARD}2 root # mkfs.vfat ${SDCARD}1
Deploy Installation to SDCard
root # mkdir -p /mnt/rpi root # mount ${SDCARD}2 /mnt/rpi root # mkdir -p /mnt/rpi/boot root # mount ${SDCARD}1 /mnt/rpi/boot root # rsync --archive \ root ##i## --verbose \ root ##i## --progress \ root ##i## --exclude "var/git/*" \ root ##i## ${SYSROOT}/{boot,bin,etc,home,lib,mnt,opt,root,run,sbin,srv,tmp,usr,var,dev,proc,sys} \ root ##i## /mnt/rpi root # umount /mnt/rpi/boot root # umount /mnt/rpi