The Funtoo Linux project has transitioned to "Hobby Mode" and this wiki is now read-only.
Difference between revisions of "Btrfs/es"
(Created page with "En el mundo de BTRFS, la expresión "volumen de almacenamiento" corresponde a un espacio de almacenamiento tipo ZFS o a un gestor de volumenes lógicos (LVM).") |
(Updating to match new version of source page) |
||
Line 1: | Line 1: | ||
<div class="mw-translate-fuzzy"> | |||
<languages/> | <languages/> | ||
BTRFS es un sistema de archivos basado en el principio copy-on-write (COW) que fue inicialmente diseñado en Oracle Corporation para ser usado en Linux. El desarrollo de BTRFS comenzó en 2007 y desde agosto de 2014 este sistema ha sido marcado como estable. | BTRFS es un sistema de archivos basado en el principio copy-on-write (COW) que fue inicialmente diseñado en Oracle Corporation para ser usado en Linux. El desarrollo de BTRFS comenzó en 2007 y desde agosto de 2014 este sistema ha sido marcado como estable. | ||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
En el año 2015, BTRFS fue adoptado como el sistema de archivos oficial de SUSE Linux Enterprise Server 12. SUSE ratificó su compromiso con BTRFS en 2017 después de que RedHat anunciara que dejaría de soportar este sistema de archivos. | En el año 2015, BTRFS fue adoptado como el sistema de archivos oficial de SUSE Linux Enterprise Server 12. SUSE ratificó su compromiso con BTRFS en 2017 después de que RedHat anunciara que dejaría de soportar este sistema de archivos. | ||
</div> | |||
BTRFS fue diseñado para mejorar algunas de las deficiencias de los sistemas de archivos en Linux, entre ellas: almacenamiento de archivos basado Extensión, espacio eficiente de almacenamiento de archivos pequeños, espacio eficiente directorios indexados, asignación dinámica de inodos, instantáneas de escritura --de sólo lectura instantáneas, subvolúmenes ( raíces del sistema de archivos interno separadas), sumas de verificación sobre los datos y metadatos (CRC32C), compresión (zlib y LZO) y soporte de múltiples dispositivos integrados. | BTRFS fue diseñado para mejorar algunas de las deficiencias de los sistemas de archivos en Linux, entre ellas: almacenamiento de archivos basado Extensión, espacio eficiente de almacenamiento de archivos pequeños, espacio eficiente directorios indexados, asignación dinámica de inodos, instantáneas de escritura --de sólo lectura instantáneas, subvolúmenes ( raíces del sistema de archivos interno separadas), sumas de verificación sobre los datos y metadatos (CRC32C), compresión (zlib y LZO) y soporte de múltiples dispositivos integrados. | ||
<div class="mw-translate-fuzzy"> | |||
BTRFS es fácil configurar y utilizar. En esta breve introducción configuraremos BTRFS en Funtoo Linux, utilizando un núcleo {{c|debian-sources}} o {{c|debian-sources-lts}} similar al que viene integrado con Funtoo Linux y también usaremos nuestro grupo de almacenamiento BTRFS para almacenar datos que no forman parte de la instalación de Funtoo Linux. Funtoo Linux iniciará desde un sistema de archivos diferente a BTRFS y como parte del proceso de instalación, iniciará el grupo de almacenamiento en BTRFS y lo montará en la ruta que nosotros deseemos. | BTRFS es fácil configurar y utilizar. En esta breve introducción configuraremos BTRFS en Funtoo Linux, utilizando un núcleo {{c|debian-sources}} o {{c|debian-sources-lts}} similar al que viene integrado con Funtoo Linux y también usaremos nuestro grupo de almacenamiento BTRFS para almacenar datos que no forman parte de la instalación de Funtoo Linux. Funtoo Linux iniciará desde un sistema de archivos diferente a BTRFS y como parte del proceso de instalación, iniciará el grupo de almacenamiento en BTRFS y lo montará en la ruta que nosotros deseemos. | ||
</div> | |||
== Instalación == | == Instalación == | ||
<div class="mw-translate-fuzzy"> | |||
Para instalar BTRFS no se necesitan pasos adicionales porque hace parte del núcleo (kernel) oficial de Linux desde la versión 2.6.29. Comencemos con instalar las herramientas para configurar BTRFS ({{c|btrfs-progs}}): | Para instalar BTRFS no se necesitan pasos adicionales porque hace parte del núcleo (kernel) oficial de Linux desde la versión 2.6.29. Comencemos con instalar las herramientas para configurar BTRFS ({{c|btrfs-progs}}): | ||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
{{console|body= | {{console|body= | ||
# ##i##emerge btrfs-progs | # ##i##emerge btrfs-progs | ||
}} | }} | ||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
Ahora, está listo para ser usado. | Ahora, está listo para ser usado. | ||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
=== Conceptos de BTRFS === | === Conceptos de BTRFS === | ||
</div> | |||
BTRFS puede ser usado para manejar los discos físicos que el sistema de archivos use, así como discos físicos que sean incorporados a un volumen de almacenamiento de BTRFS. Después, BTRFS puede crear subvolúmenes de almacenamiento en donde los archivos pueden ser almacenados. | <div class="mw-translate-fuzzy"> | ||
BTRFS puede ser usado para manejar los discos físicos que el sistema de archivos use, así como discos físicos que sean incorporados a un volumen de almacenamiento de BTRFS. Después, BTRFS puede crear subvolúmenes de almacenamiento en donde los archivos pueden ser almacenados. | |||
</div> | |||
A diferencia de los sistemas de archivos tradicionales en Linux, el sistema de archivo BTRFS puede disponer de almacenamiento por demanda desde el volumen de almacenamiento subyacente. | <div class="mw-translate-fuzzy"> | ||
A diferencia de los sistemas de archivos tradicionales en Linux, el sistema de archivo BTRFS puede disponer de almacenamiento por demanda desde el volumen de almacenamiento subyacente. | |||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
En el mundo de BTRFS, la expresión "volumen de almacenamiento" corresponde a un espacio de almacenamiento tipo ZFS o a un gestor de volumenes lógicos (LVM). | En el mundo de BTRFS, la expresión "volumen de almacenamiento" corresponde a un espacio de almacenamiento tipo ZFS o a un gestor de volumenes lógicos (LVM). | ||
</div> | |||
* ''devices'' - one or multiple underlying physical volumes. | * ''devices'' - one or multiple underlying physical volumes. | ||
Line 33: | Line 53: | ||
== Creating a Volume == | == Creating a Volume == | ||
To create a basic | To create a basic btrfs volume, you will need an extra empty disk. Perform the following steps: | ||
{{console|body= | {{console|body= | ||
Line 68: | Line 88: | ||
{{console|body= | {{console|body= | ||
# ##i## mkdir /mnt/btrfs-top-level | |||
# ##i## mount /dev/sdxy /mnt/btrfs-top-level | |||
# ##i## mount | |||
... | |||
/dev/sdxy on /mnt/btrfs-top-level type btrfs (rw,relatime,ssd,space_cache,subvolid=5,subvol=/) | |||
}} | |||
{{Important|It is recommended that nothing is stored directly on this top-level volume (ID 5) root directory.}} | |||
== Creating Subvolumes == | |||
Btrfs has a concept of subvolumes. Subvolume is an independently mountable POSIX filetree (but not a block device). There are several basic schemas to layout subvolumes (including snapshots) as well as mixtures thereof. | |||
Lets create children of the top level subvolume (ID 5). We will have: | |||
* {{c|@data}} - it will serve as mountable {{c|/data}} | |||
* {{c|.snapshots}} - here snapshots will be stored | |||
{{console|body= | |||
# ##i## cd /mnt/btrfs-top-level | |||
# ##i## btrfs subvolume create @data | |||
# ##i## btrfs subvolume create .snapshots | |||
# ##i## btrfs subvolume list /mnt/btrfs-top-level | |||
ID 256 gen 322338 top level 5 path @data | |||
ID 257 gen 322275 top level 5 path .snapshots | |||
}} | |||
== The default Subvolume == | |||
{{Note|Changing the default subvolume with {{c|btrfs subvolume default}} will make the top level of the filesystem accessible only when {{c|subvol}} or {{c|subvolid}} mount options are specified}} | |||
When btrfs block device is mounted without specifying a subvolume the default one is used. To check default subvolume run | |||
{{console|body= | |||
# ##i## btrfs subvolume get-default /mnt/btrfs-top-level | |||
ID 5 (FS_TREE) | |||
}} | |||
For the convenience lets make {{c|@data}} subvolume as the default one. It's good to double check the subvolume ID first. Either {{c|btrfs subvolume list}} or {{c|btrfs subvolume show}} can be used for that | |||
{{console|body= | |||
# ##i## btrfs subvolume show /mnt/btrfs-top-level/@data | |||
... | |||
Subvolume ID: 256 | |||
}} | |||
Now you can make this subvolume as a default one | |||
{{console|body= | |||
# ##i## btrfs subvolume set-default 256 /mnt/btrfs-top-level | |||
# ##i## btrfs subvolume get-default /mnt/btrfs-top-level | |||
ID 256 gen 322336 top level 5 path @data | |||
}} | |||
At this point you can stop working on the top level subvolume (ID 5) and instead mount directly {{c|@data}} subvolume. | |||
{{console|body= | |||
# ##i## cd /mnt | |||
# ##i## umount /mnt/btrfs-top-level | |||
# ##i## mkdir /data | # ##i## mkdir /data | ||
# ##i## mount /dev/sdxy /data | # ##i## mount /dev/sdxy /data | ||
}} | }} | ||
To automatically mount | == Nested Subvolumes == | ||
{{Note|Nested subvolumes are not going to be a part of snapshots created from their parent subvolume. So one typical reason is to exclude certain parts of the filesystem from being snapshot.}} | |||
Lets create a separate nested subvolume for {{c|/data/independent}}. | |||
{{console|body= | |||
# ##i## btrfs subvolume create /data/independent | |||
# ##i## btrfs subvolume list /data | |||
ID 258 gen 161 top level 256 path independent | |||
}} | |||
Usually you will want to "split" areas which are "complete" and/or "consistent" in themselves. Examples for this more-fine grained partitioning could be {{c|/var/log}}, {{c|/var/www}} or {{c|/var/lib/postgresql}}. | |||
== /etc/fstab == | |||
To automatically mount the {{c|@data}} subvolume after reboot you need to modify {{c|/etc/fstab}} | |||
{{file|name=/etc/fstab|desc=fstab for btrfs|body= | |||
/dev/sdxy /data btrfs subvolid=256,defaults 0 0 | |||
}} | |||
{{Warning|According to [https://btrfs.readthedocs.io/en/latest/Administration.html#mount-options btrfs docs] most mount options apply to the whole filesystem and only options in the first mounted subvolume will take effect. This means that (for example) you can't set per-subvolume {{c|nodatacow}}, {{c|nodatasum}}, or {{c|compress}}.}} | |||
Now lets verify if this changes were correct | |||
{{console|body= | |||
# ##i## cd / | |||
# ##i## umount /data | |||
# ##i## mount /data | |||
# ##i## ls /data | |||
independent | |||
}} | |||
Did you just notice that although we mounted our {{c|@data}} subvolume the nested subvolume {{c|@data/independent}} is also present? | |||
== Snapshots == | |||
For the purpose of checking out this cool btrfs feature lets populate our filesystem with some example data first | |||
{{console|body= | |||
# ##i## echo 'btrfs' > /data/foo.txt | |||
# ##i## echo 'fun' > /data/independent/bar.txt | |||
}} | |||
As you probably remember on the top level (next to {{c|@data}} subvolume) you've also created the {{c|.snapshots}} subvolume. You can mount it now to create some snapshots | |||
{{console|body= | |||
# ##i## mkdir /mnt/snapshots | |||
# ##i## mount /dev/sdxy /mnt/snapshots -o subvolid=257 | |||
}} | |||
A snapshot is a subvolume like any other, with given initial content. By default, snapshots are created read-write. File modifications in a snapshot do not affect the files in the original subvolume. Lets create a read-write snapshot for {{c|/data}} and read-only snapshot for {{c|/data/independent}} | |||
{{console|body= | |||
# ##i## btrfs subvolume snapshot /data /mnt/snapshots/data_$(date -u -Iseconds) | |||
Create a snapshot of '/data' in '/mnt/snapshots/data_2022-08-30T22:04:57+00:00' | |||
# ##i## btrfs subvolume snapshot -r /data/independent /mnt/snapshots/independent_$(date -u -Iseconds) | |||
Create a readonly snapshot of '/data/independent' in '/mnt/snapshots/independent_2022-08-30T22:05:29+00:00' | |||
}} | |||
Once again, nested subvolumes are not going to be a part of snapshots created from their parent subvolume. So you shouldn't be surprised when you compare the contents of the {{c|/data}} vs the contents of the {{c|/mnt/snapshots}} | |||
{{console|body= | |||
# ##i## tree /data | |||
/data | |||
├── foo.txt | |||
└── independent | |||
└── bar.txt | |||
# ##i## tree /mnt/snapshots | |||
/mnt/snapshots | |||
├── data_2022-08-30T22:04:57+00:00 | |||
│ └── foo.txt | |||
└── independent_2022-08-30T22:05:29+00:00 | |||
└── bar.txt | |||
}} | |||
At this point you might be interested in [https://btrfs.readthedocs.io/en/latest/Send-receive.html send and receive btrfs features]. | |||
{{Note|According to [https://btrfs.readthedocs.io/en/latest/Subvolumes.html btrfs docs] a snapshot is not a backup: snapshots work by use of BTRFS copy-on-write behaviour. A snapshot and the original it was taken from initially share all of the same data blocks. If that data is damaged in some way (cosmic rays, bad disk sector, accident with dd to the disk), then the snapshot and the original will both be damaged.}} | |||
== Wrap up == | |||
{{Important|It is recommended to run {{c|btrfs scrub}} once in a while. E.g. every month}} | |||
Scrub is the online check and repair functionality that verifies the integrity of data and metadata, assuming the tree structure is fine. You can run it on a mounted file system; it runs as a background process during normal operation. | |||
To start a (background) scrub on the filesystem which contains {{c|/data}} run | |||
{{console|body= | |||
# ##i## btrfs scrub start /data | |||
scrub started on /data, fsid 40f8b94f-07ee-4f7e-beb1-8e686abc246d (pid=5525) | |||
}} | |||
To check the status of a running scrub | |||
{{console|body= | {{console|body= | ||
# ##i## btrfs scrub status /data | |||
UUID: 40f8b94f-07ee-4f7e-beb1-8e686abc246d | |||
Scrub started: Tue Aug 30 00:38:54 2022 | |||
Status: running | |||
Duration: 0:00:15 | |||
Time left: 0:00:34 | |||
ETA: Tue Aug 30 00:39:44 2022 | |||
Total to scrub: 149.06GiB | |||
Bytes scrubbed: 44.79GiB (30.04%) | |||
Rate: 2.99GiB/s | |||
Error summary: no errors found | |||
}} | }} | ||
You should now be at the point where you can begin to use | You should now be at the point where you can begin to use btrfs for a variety of tasks. While there is a lot more to btrfs than what is covered in this short introduction, you should now have a good understanding of the fundamental concepts on which btrfs is based. | ||
[[Category: | [[Category:Btrfs]] | ||
[[Category:Filesystems]] | [[Category:Filesystems]] | ||
[[Category:HOWTO]] | [[Category:HOWTO]] | ||
[[Category:Official Documentation]] | [[Category:Official Documentation]] |
Latest revision as of 18:14, September 4, 2022
BTRFS es un sistema de archivos basado en el principio copy-on-write (COW) que fue inicialmente diseñado en Oracle Corporation para ser usado en Linux. El desarrollo de BTRFS comenzó en 2007 y desde agosto de 2014 este sistema ha sido marcado como estable.
En el año 2015, BTRFS fue adoptado como el sistema de archivos oficial de SUSE Linux Enterprise Server 12. SUSE ratificó su compromiso con BTRFS en 2017 después de que RedHat anunciara que dejaría de soportar este sistema de archivos.
BTRFS fue diseñado para mejorar algunas de las deficiencias de los sistemas de archivos en Linux, entre ellas: almacenamiento de archivos basado Extensión, espacio eficiente de almacenamiento de archivos pequeños, espacio eficiente directorios indexados, asignación dinámica de inodos, instantáneas de escritura --de sólo lectura instantáneas, subvolúmenes ( raíces del sistema de archivos interno separadas), sumas de verificación sobre los datos y metadatos (CRC32C), compresión (zlib y LZO) y soporte de múltiples dispositivos integrados.
BTRFS es fácil configurar y utilizar. En esta breve introducción configuraremos BTRFS en Funtoo Linux, utilizando un núcleo debian-sources
o debian-sources-lts
similar al que viene integrado con Funtoo Linux y también usaremos nuestro grupo de almacenamiento BTRFS para almacenar datos que no forman parte de la instalación de Funtoo Linux. Funtoo Linux iniciará desde un sistema de archivos diferente a BTRFS y como parte del proceso de instalación, iniciará el grupo de almacenamiento en BTRFS y lo montará en la ruta que nosotros deseemos.
Instalación
Para instalar BTRFS no se necesitan pasos adicionales porque hace parte del núcleo (kernel) oficial de Linux desde la versión 2.6.29. Comencemos con instalar las herramientas para configurar BTRFS (btrfs-progs
):
root # emerge btrfs-progs
Ahora, está listo para ser usado.
Conceptos de BTRFS
BTRFS puede ser usado para manejar los discos físicos que el sistema de archivos use, así como discos físicos que sean incorporados a un volumen de almacenamiento de BTRFS. Después, BTRFS puede crear subvolúmenes de almacenamiento en donde los archivos pueden ser almacenados.
A diferencia de los sistemas de archivos tradicionales en Linux, el sistema de archivo BTRFS puede disponer de almacenamiento por demanda desde el volumen de almacenamiento subyacente.
En el mundo de BTRFS, la expresión "volumen de almacenamiento" corresponde a un espacio de almacenamiento tipo ZFS o a un gestor de volumenes lógicos (LVM).
- devices - one or multiple underlying physical volumes.
- volume - one large storage pool comprised of all space of the devices and can support different redundancy levels
- subvolumes - these are what get mounted and you store files in.
- snapshots - a read-only copy of a subvolume at a given point in time and/or read-write copy of a subvolume in time (aka clone).
Creating a Volume
To create a basic btrfs volume, you will need an extra empty disk. Perform the following steps:
root # mkfs.btrfs /dev/sdxy btrfs-progs v4.17.1 See http://btrfs.wiki.kernel.org for more information. Detected a SSD, turning off metadata duplication. Mkfs with -m dup if you want to force metadata duplication. Performing full device TRIM /dev/sdj (223.57GiB) ... Label: (null) UUID: d6bcba6e-8fd5-41fc-9bb4-79628c5c928c Node size: 16384 Sector size: 4096 Filesystem size: 223.57GiB Block group profiles: Data: single 8.00MiB Metadata: single 8.00MiB System: single 4.00MiB SSD detected: yes Incompat features: extref, skinny-metadata Number of devices: 1 Devices: ID SIZE PATH 1 223.57GiB /dev/sdxy
/dev/sdxy
should be an unused disk. You may need to use the following command if this disk contains any pre-existing data on it:
root # mkfs.btrfs -f /dev/sdxy
Now you can mount the created volume as you would mount any other linux filesystem.
root # mkdir /mnt/btrfs-top-level root # mount /dev/sdxy /mnt/btrfs-top-level root # mount ... /dev/sdxy on /mnt/btrfs-top-level type btrfs (rw,relatime,ssd,space_cache,subvolid=5,subvol=/)
It is recommended that nothing is stored directly on this top-level volume (ID 5) root directory.
Creating Subvolumes
Btrfs has a concept of subvolumes. Subvolume is an independently mountable POSIX filetree (but not a block device). There are several basic schemas to layout subvolumes (including snapshots) as well as mixtures thereof.
Lets create children of the top level subvolume (ID 5). We will have:
@data
- it will serve as mountable/data
.snapshots
- here snapshots will be stored
root # cd /mnt/btrfs-top-level root # btrfs subvolume create @data root # btrfs subvolume create .snapshots root # btrfs subvolume list /mnt/btrfs-top-level ID 256 gen 322338 top level 5 path @data ID 257 gen 322275 top level 5 path .snapshots
The default Subvolume
Changing the default subvolume with btrfs subvolume default
will make the top level of the filesystem accessible only when subvol
or subvolid
mount options are specified
When btrfs block device is mounted without specifying a subvolume the default one is used. To check default subvolume run
root # btrfs subvolume get-default /mnt/btrfs-top-level ID 5 (FS_TREE)
For the convenience lets make @data
subvolume as the default one. It's good to double check the subvolume ID first. Either btrfs subvolume list
or btrfs subvolume show
can be used for that
root # btrfs subvolume show /mnt/btrfs-top-level/@data ... Subvolume ID: 256
Now you can make this subvolume as a default one
root # btrfs subvolume set-default 256 /mnt/btrfs-top-level root # btrfs subvolume get-default /mnt/btrfs-top-level ID 256 gen 322336 top level 5 path @data
At this point you can stop working on the top level subvolume (ID 5) and instead mount directly @data
subvolume.
root # cd /mnt root # umount /mnt/btrfs-top-level root # mkdir /data root # mount /dev/sdxy /data
Nested Subvolumes
Nested subvolumes are not going to be a part of snapshots created from their parent subvolume. So one typical reason is to exclude certain parts of the filesystem from being snapshot.
Lets create a separate nested subvolume for /data/independent
.
root # btrfs subvolume create /data/independent root # btrfs subvolume list /data ID 258 gen 161 top level 256 path independent
Usually you will want to "split" areas which are "complete" and/or "consistent" in themselves. Examples for this more-fine grained partitioning could be /var/log
, /var/www
or /var/lib/postgresql
.
/etc/fstab
To automatically mount the @data
subvolume after reboot you need to modify /etc/fstab
/etc/fstab
- fstab for btrfs/dev/sdxy /data btrfs subvolid=256,defaults 0 0
According to btrfs docs most mount options apply to the whole filesystem and only options in the first mounted subvolume will take effect. This means that (for example) you can't set per-subvolume nodatacow
, nodatasum
, or compress
.
Now lets verify if this changes were correct
root # cd / root # umount /data root # mount /data root # ls /data independent
Did you just notice that although we mounted our @data
subvolume the nested subvolume @data/independent
is also present?
Snapshots
For the purpose of checking out this cool btrfs feature lets populate our filesystem with some example data first
root # echo 'btrfs' > /data/foo.txt root # echo 'fun' > /data/independent/bar.txt
As you probably remember on the top level (next to @data
subvolume) you've also created the .snapshots
subvolume. You can mount it now to create some snapshots
root # mkdir /mnt/snapshots root # mount /dev/sdxy /mnt/snapshots -o subvolid=257
A snapshot is a subvolume like any other, with given initial content. By default, snapshots are created read-write. File modifications in a snapshot do not affect the files in the original subvolume. Lets create a read-write snapshot for /data
and read-only snapshot for /data/independent
root # btrfs subvolume snapshot /data /mnt/snapshots/data_$(date -u -Iseconds) Create a snapshot of '/data' in '/mnt/snapshots/data_2022-08-30T22:04:57+00:00' root # btrfs subvolume snapshot -r /data/independent /mnt/snapshots/independent_$(date -u -Iseconds) Create a readonly snapshot of '/data/independent' in '/mnt/snapshots/independent_2022-08-30T22:05:29+00:00'
Once again, nested subvolumes are not going to be a part of snapshots created from their parent subvolume. So you shouldn't be surprised when you compare the contents of the /data
vs the contents of the /mnt/snapshots
root # tree /data /data ├── foo.txt └── independent └── bar.txt root # tree /mnt/snapshots /mnt/snapshots ├── data_2022-08-30T22:04:57+00:00 │ └── foo.txt └── independent_2022-08-30T22:05:29+00:00 └── bar.txt
At this point you might be interested in send and receive btrfs features.
According to btrfs docs a snapshot is not a backup: snapshots work by use of BTRFS copy-on-write behaviour. A snapshot and the original it was taken from initially share all of the same data blocks. If that data is damaged in some way (cosmic rays, bad disk sector, accident with dd to the disk), then the snapshot and the original will both be damaged.
Wrap up
It is recommended to run btrfs scrub
once in a while. E.g. every month
Scrub is the online check and repair functionality that verifies the integrity of data and metadata, assuming the tree structure is fine. You can run it on a mounted file system; it runs as a background process during normal operation.
To start a (background) scrub on the filesystem which contains /data
run
root # btrfs scrub start /data scrub started on /data, fsid 40f8b94f-07ee-4f7e-beb1-8e686abc246d (pid=5525)
To check the status of a running scrub
root # btrfs scrub status /data UUID: 40f8b94f-07ee-4f7e-beb1-8e686abc246d Scrub started: Tue Aug 30 00:38:54 2022 Status: running Duration: 0:00:15 Time left: 0:00:34 ETA: Tue Aug 30 00:39:44 2022 Total to scrub: 149.06GiB Bytes scrubbed: 44.79GiB (30.04%) Rate: 2.99GiB/s Error summary: no errors found
You should now be at the point where you can begin to use btrfs for a variety of tasks. While there is a lot more to btrfs than what is covered in this short introduction, you should now have a good understanding of the fundamental concepts on which btrfs is based.